Step
*
1
of Lemma
csm-Kan-cubical-identity
.....subterm..... T:t
2:n
1. X : CubicalSet
2. Delta : CubicalSet
3. s : Delta ⟶ X
4. A : {X ⊢ _(Kan)}
5. a : {X ⊢ _:Kan-type(A)}
6. b : {X ⊢ _:Kan-type(A)}
7. ((Id_Kan-type(A) a b))s = (Id_Kan-type((A)s) (a)s (b)s) ∈ {Delta ⊢ _}
⊢ (λI,alpha. (Kan_id_filler(X;A;a;b) I (s)alpha))
= Kan_id_filler(Delta;(A)s;(a)s;(b)s)
∈ (I:(Cname List)
⟶ alpha:Delta(I)
⟶ J:(nameset(I) List)
⟶ x:nameset(I)
⟶ i:ℕ2
⟶ A-open-box(Delta;((Id_Kan-type(A) a b))s;I;alpha;J;x;i)
⟶ ((Id_Kan-type(A) a b))s(alpha))
BY
{ (RepeatFor 6 ((FunExt THENA Auto))
THEN Reduce 0
THEN (InstLemma `csm-A-open-box` [⌜Delta⌝;⌜X⌝;⌜s⌝;⌜(Id_Kan-type(A) a b)⌝;⌜I⌝;⌜alpha⌝;⌜J⌝;⌜x⌝;⌜i⌝]⋅ THENA Auto)
THEN SubsumeC ⌜I-path(X;Kan-type(A);a;b;I;(s)alpha)⌝⋅
THEN Try ((RepUR ``cubical-type-at cubical-identity csm-ap-type cubical-path`` 0
THEN BLemma `subtype_quotient`
THEN Auto))) }
1
1. X : CubicalSet
2. Delta : CubicalSet
3. s : Delta ⟶ X
4. A : {X ⊢ _(Kan)}
5. a : {X ⊢ _:Kan-type(A)}
6. b : {X ⊢ _:Kan-type(A)}
7. ((Id_Kan-type(A) a b))s = (Id_Kan-type((A)s) (a)s (b)s) ∈ {Delta ⊢ _}
8. I : Cname List
9. alpha : Delta(I)
10. J : nameset(I) List
11. x : nameset(I)
12. i : ℕ2
13. x1 : A-open-box(Delta;((Id_Kan-type(A) a b))s;I;alpha;J;x;i)
14. A-open-box(Delta;((Id_Kan-type(A) a b))s;I;alpha;J;x;i) ⊆r A-open-box(X;(Id_Kan-type(A) a b);I;(s)alpha;J;x;i)
⊢ (Kan_id_filler(X;A;a;b) I (s)alpha J x i x1)
= (Kan_id_filler(Delta;(A)s;(a)s;(b)s) I alpha J x i x1)
∈ I-path(X;Kan-type(A);a;b;I;(s)alpha)
Latex:
Latex:
.....subterm..... T:t
2:n
1. X : CubicalSet
2. Delta : CubicalSet
3. s : Delta {}\mrightarrow{} X
4. A : \{X \mvdash{} \_(Kan)\}
5. a : \{X \mvdash{} \_:Kan-type(A)\}
6. b : \{X \mvdash{} \_:Kan-type(A)\}
7. ((Id\_Kan-type(A) a b))s = (Id\_Kan-type((A)s) (a)s (b)s)
\mvdash{} (\mlambda{}I,alpha. (Kan\_id\_filler(X;A;a;b) I (s)alpha)) = Kan\_id\_filler(Delta;(A)s;(a)s;(b)s)
By
Latex:
(RepeatFor 6 ((FunExt THENA Auto))
THEN Reduce 0
THEN (InstLemma `csm-A-open-box` [\mkleeneopen{}Delta\mkleeneclose{};\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}s\mkleeneclose{};\mkleeneopen{}(Id\_Kan-type(A) a b)\mkleeneclose{};\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}alpha\mkleeneclose{};\mkleeneopen{}J\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}i\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN SubsumeC \mkleeneopen{}I-path(X;Kan-type(A);a;b;I;(s)alpha)\mkleeneclose{}\mcdot{}
THEN Try ((RepUR ``cubical-type-at cubical-identity csm-ap-type cubical-path`` 0
THEN BLemma `subtype\_quotient`
THEN Auto)))
Home
Index