Nuprl Lemma : csm-Kan-cubical-identity
∀[X,Delta:CubicalSet]. ∀[s:Delta ⟶ X]. ∀[A:{X ⊢ _(Kan)}]. ∀[a,b:{X ⊢ _:Kan-type(A)}].
  ((Kan(Id_A a b))s = Kan(Id_(A)s (a)s (b)s) ∈ {Delta ⊢ _(Kan)})
Proof
Definitions occuring in Statement : 
Kan-cubical-identity: Kan(Id_A a b)
, 
csm-Kan-cubical-type: (AK)s
, 
Kan-type: Kan-type(Ak)
, 
Kan-cubical-type: {X ⊢ _(Kan)}
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:AF}
, 
cube-set-map: A ⟶ B
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
nameset: nameset(L)
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
cubical-type: {X ⊢ _}
, 
Kan-cubical-identity: Kan(Id_A a b)
, 
csm-Kan-cubical-type: (AK)s
, 
Kan-cubical-type: {X ⊢ _(Kan)}
, 
true: True
, 
top: Top
, 
squash: ↓T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
cubical-path: cubical-path(X;A;a;b;I;alpha)
, 
pi1: fst(t)
, 
cubical-type-at: A(a)
, 
csm-ap-type: (AF)s
, 
cubical-identity: (Id_A a b)
, 
Kan-type: Kan-type(Ak)
, 
ge: i ≥ j 
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
int_upper: {i...}
, 
coordinate_name: Cname
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
cons: [a / b]
, 
select: L[n]
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
false: False
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
nat: ℕ
, 
exists: ∃x:A. B[x]
, 
l_member: (x ∈ l)
, 
pi2: snd(t)
, 
Kanfiller: filler(x;i;bx)
, 
Kan_id_filler: Kan_id_filler(X;A;a;b)
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
A-face: A-face(X;A;I;alpha)
, 
cubical-id-box: cubical-id-box(X;A;a;b;I;alpha;box)
, 
extend-A-open-box: extend-A-open-box(bx;f1;f2)
, 
term-A-face: term-A-face(a;I;alpha;i)
, 
csm-ap: (s)x
, 
cubical-term-at: u(a)
, 
csm-ap-term: (t)s
, 
lift-id-faces: lift-id-faces(X;A;I;alpha;box)
, 
quotient: x,y:A//B[x; y]
, 
I-path: I-path(X;A;a;b;I;alpha)
, 
named-path: named-path(X;A;a;b;I;alpha;z)
, 
path-eq: path-eq(X;A;I;alpha;p;q)
, 
lift-id-face: lift-id-face(X;A;I;alpha;face)
, 
spreadn: spread3, 
set-path-name: set-path-name(X;A;I;alpha;x;p)
, 
named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
Lemmas referenced : 
cubical-set_wf, 
cube-set-map_wf, 
Kan-cubical-type_wf, 
cubical-type-at_wf, 
subtype_rel_list, 
A-open-box_wf, 
int_seg_wf, 
nameset_wf, 
iff_weakening_equal, 
subtype_rel_self, 
csm-cubical-identity, 
cube-set-restriction_wf, 
name-morph_wf, 
I-cube_wf, 
coordinate_name_wf, 
list_wf, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
cubical-identity_wf, 
cubical-type-equal, 
istype-void, 
type-csm-Kan-cubical-type, 
csm-ap-type_wf, 
cubical-term_wf, 
subtype_rel-equal, 
Kan-type_wf, 
csm-ap-term_wf, 
Kan-cubical-identity_wf, 
csm-Kan-cubical-type_wf, 
Kan-cubical-type-equal, 
path-eq-equiv, 
path-eq_wf, 
csm-ap_wf, 
I-path_wf, 
subtype_quotient, 
csm-A-open-box, 
Kan_id_filler_wf1, 
csm-I-path, 
equal-I-paths, 
cubical-id-box_wf, 
A-open-box-equal, 
l_subset_right_cons_trivial, 
nameset_subtype, 
l_member_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
sq_stable__le, 
decidable__equal-coordinate_name, 
sq_stable__l_member, 
nat_properties, 
select_wf, 
length_wf, 
false_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
intformand_wf, 
add-is-int-iff, 
nat_plus_properties, 
istype-less_than, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
istype-int, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__lt, 
int_seg_properties, 
length_wf_nat, 
add_nat_plus, 
length_of_cons_lemma, 
istype-le, 
iota_wf, 
csm-ap-restriction, 
cons_wf, 
fresh-cname_wf, 
not_wf, 
A-face_wf, 
csm-type-at, 
cubical-type_wf, 
face-map_wf2, 
nil_wf, 
cname_deq_wf, 
list-diff_wf, 
add-remove-fresh-sq, 
cube-set-restriction-comp, 
cubical-term-at_wf, 
iota-identity, 
fresh-cname-not-member2, 
cube-set-restriction-id, 
name-morph_subtype, 
l_subset_refl, 
map_wf, 
member-list-diff, 
csm-cubical-type-ap-morph, 
cubical-type-ap-morph-comp, 
rename-one-name_wf, 
extend-name-morph_wf, 
id-morph_wf, 
list-diff-cons-single, 
fresh-cname-not-equal, 
name-comp_wf, 
extend-name-morph-rename-one, 
l_subset_wf, 
rename-one-extend-id, 
subtype_base_sq, 
list_subtype_base, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
rename-one-iota, 
iota-face-map, 
fresh-cname-not-equal2, 
cubical-type-ap-morph_wf, 
extend-name-morph-iota, 
name-comp-id-left
Rules used in proof : 
isectIsTypeImplies, 
axiomEquality, 
functionIsType, 
dependent_pairEquality_alt, 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
cumulativity, 
functionEquality, 
productEquality, 
universeEquality, 
universeIsType, 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
inhabitedIsType, 
rename, 
setElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
voidElimination, 
isect_memberEquality_alt, 
sqequalRule, 
because_Cache, 
imageElimination, 
lambdaEquality_alt, 
independent_isectElimination, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
functionExtensionality, 
lambdaEquality, 
voidEquality, 
isect_memberEquality, 
productIsType, 
equalityIstype, 
int_eqEquality, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
applyLambdaEquality, 
Error :memTop, 
approximateComputation, 
unionElimination, 
lambdaFormation_alt, 
dependent_set_memberEquality_alt, 
dependent_pairFormation_alt, 
independent_pairFormation, 
hyp_replacement, 
setEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
sqequalBase, 
intEquality
Latex:
\mforall{}[X,Delta:CubicalSet].  \mforall{}[s:Delta  {}\mrightarrow{}  X].  \mforall{}[A:\{X  \mvdash{}  \_(Kan)\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:Kan-type(A)\}].
    ((Kan(Id\_A  a  b))s  =  Kan(Id\_(A)s  (a)s  (b)s))
Date html generated:
2020_05_21-AM-11_14_14
Last ObjectModification:
2020_01_15-PM-01_40_28
Theory : cubical!sets
Home
Index