Nuprl Lemma : csm-Kan-cubical-identity

[X,Delta:CubicalSet]. ∀[s:Delta ⟶ X]. ∀[A:{X ⊢ _(Kan)}]. ∀[a,b:{X ⊢ _:Kan-type(A)}].
  ((Kan(Id_A b))s Kan(Id_(A)s (a)s (b)s) ∈ {Delta ⊢ _(Kan)})


Proof




Definitions occuring in Statement :  Kan-cubical-identity: Kan(Id_A b) csm-Kan-cubical-type: (AK)s Kan-type: Kan-type(Ak) Kan-cubical-type: {X ⊢ _(Kan)} csm-ap-term: (t)s cubical-term: {X ⊢ _:AF} cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  nameset: nameset(L) implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} all: x:A. B[x] prop: cubical-type: {X ⊢ _} Kan-cubical-identity: Kan(Id_A b) csm-Kan-cubical-type: (AK)s Kan-cubical-type: {X ⊢ _(Kan)} true: True top: Top squash: T uimplies: supposing a subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] cubical-path: cubical-path(X;A;a;b;I;alpha) pi1: fst(t) cubical-type-at: A(a) csm-ap-type: (AF)s cubical-identity: (Id_A b) Kan-type: Kan-type(Ak) ge: i ≥  sq_stable: SqStable(P) uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) int_upper: {i...} coordinate_name: Cname less_than: a < b nat_plus: + cand: c∧ B cons: [a b] select: L[n] lelt: i ≤ j < k int_seg: {i..j-} false: False not: ¬A less_than': less_than'(a;b) le: A ≤ B nat: exists: x:A. B[x] l_member: (x ∈ l) pi2: snd(t) Kanfiller: filler(x;i;bx) Kan_id_filler: Kan_id_filler(X;A;a;b) A-open-box: A-open-box(X;A;I;alpha;J;x;i) A-face: A-face(X;A;I;alpha) cubical-id-box: cubical-id-box(X;A;a;b;I;alpha;box) extend-A-open-box: extend-A-open-box(bx;f1;f2) term-A-face: term-A-face(a;I;alpha;i) csm-ap: (s)x cubical-term-at: u(a) csm-ap-term: (t)s lift-id-faces: lift-id-faces(X;A;I;alpha;box) quotient: x,y:A//B[x; y] I-path: I-path(X;A;a;b;I;alpha) named-path: named-path(X;A;a;b;I;alpha;z) path-eq: path-eq(X;A;I;alpha;p;q) lift-id-face: lift-id-face(X;A;I;alpha;face) spreadn: spread3 set-path-name: set-path-name(X;A;I;alpha;x;p) named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T)
Lemmas referenced :  cubical-set_wf cube-set-map_wf Kan-cubical-type_wf cubical-type-at_wf subtype_rel_list A-open-box_wf int_seg_wf nameset_wf iff_weakening_equal subtype_rel_self csm-cubical-identity cube-set-restriction_wf name-morph_wf I-cube_wf coordinate_name_wf list_wf istype-universe true_wf squash_wf equal_wf cubical-identity_wf cubical-type-equal istype-void type-csm-Kan-cubical-type csm-ap-type_wf cubical-term_wf subtype_rel-equal Kan-type_wf csm-ap-term_wf Kan-cubical-identity_wf csm-Kan-cubical-type_wf Kan-cubical-type-equal path-eq-equiv path-eq_wf csm-ap_wf I-path_wf subtype_quotient csm-A-open-box Kan_id_filler_wf1 csm-I-path equal-I-paths cubical-id-box_wf A-open-box-equal l_subset_right_cons_trivial nameset_subtype l_member_wf int_formula_prop_le_lemma intformle_wf decidable__le sq_stable__le decidable__equal-coordinate_name sq_stable__l_member nat_properties select_wf length_wf false_wf int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_and_lemma intformeq_wf itermAdd_wf itermVar_wf intformand_wf add-is-int-iff nat_plus_properties istype-less_than int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma istype-int itermConstant_wf intformless_wf intformnot_wf full-omega-unsat decidable__lt int_seg_properties length_wf_nat add_nat_plus length_of_cons_lemma istype-le iota_wf csm-ap-restriction cons_wf fresh-cname_wf not_wf A-face_wf csm-type-at cubical-type_wf face-map_wf2 nil_wf cname_deq_wf list-diff_wf add-remove-fresh-sq cube-set-restriction-comp cubical-term-at_wf iota-identity fresh-cname-not-member2 cube-set-restriction-id name-morph_subtype l_subset_refl map_wf member-list-diff csm-cubical-type-ap-morph cubical-type-ap-morph-comp rename-one-name_wf extend-name-morph_wf id-morph_wf list-diff-cons-single fresh-cname-not-equal name-comp_wf extend-name-morph-rename-one l_subset_wf rename-one-extend-id subtype_base_sq list_subtype_base set_subtype_base le_wf int_subtype_base rename-one-iota iota-face-map fresh-cname-not-equal2 cubical-type-ap-morph_wf extend-name-morph-iota name-comp-id-left
Rules used in proof :  isectIsTypeImplies axiomEquality functionIsType dependent_pairEquality_alt independent_functionElimination productElimination dependent_functionElimination cumulativity functionEquality productEquality universeEquality universeIsType instantiate equalitySymmetry equalityTransitivity inhabitedIsType rename setElimination baseClosed imageMemberEquality natural_numberEquality voidElimination isect_memberEquality_alt sqequalRule because_Cache imageElimination lambdaEquality_alt independent_isectElimination applyEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution functionExtensionality lambdaEquality voidEquality isect_memberEquality productIsType equalityIstype int_eqEquality closedConclusion baseApply promote_hyp pointwiseFunctionality applyLambdaEquality Error :memTop,  approximateComputation unionElimination lambdaFormation_alt dependent_set_memberEquality_alt dependent_pairFormation_alt independent_pairFormation hyp_replacement setEquality pointwiseFunctionalityForEquality pertypeElimination sqequalBase intEquality

Latex:
\mforall{}[X,Delta:CubicalSet].  \mforall{}[s:Delta  {}\mrightarrow{}  X].  \mforall{}[A:\{X  \mvdash{}  \_(Kan)\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:Kan-type(A)\}].
    ((Kan(Id\_A  a  b))s  =  Kan(Id\_(A)s  (a)s  (b)s))



Date html generated: 2020_05_21-AM-11_14_14
Last ObjectModification: 2020_01_15-PM-01_40_28

Theory : cubical!sets


Home Index