Nuprl Lemma : csm-cubical-type-ap-morph

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[I,J,f,a,u,s:Top].  ((u f) (u (s)a f))


Proof




Definitions occuring in Statement :  csm-ap-type: (AF)s cubical-type-ap-morph: (u f) cubical-type: {X ⊢ _} csm-ap: (s)x cubical-set: CubicalSet uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  cubical-type: {X ⊢ _} csm-ap: (s)x cubical-type-ap-morph: (u f) csm-ap-type: (AF)s pi2: snd(t) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  top_wf cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity setElimination thin rename cut productElimination sqequalRule hypothesis lemma_by_obid because_Cache isectElimination hypothesisEquality isect_memberFormation introduction sqequalAxiom isect_memberEquality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I,J,f,a,u,s:Top].    ((u  a  f)  \msim{}  (u  (s)a  f))



Date html generated: 2016_06_16-PM-05_39_51
Last ObjectModification: 2015_12_28-PM-04_35_48

Theory : cubical!sets


Home Index