Nuprl Lemma : csm-ap-term_wf

[Delta,Gamma:CubicalSet]. ∀[s:Delta ⟶ Gamma]. ∀[A:{Gamma ⊢ _}]. ∀[t:{Gamma ⊢ _:A}].  ((t)s ∈ {Delta ⊢ _:(A)s})


Proof




Definitions occuring in Statement :  csm-ap-term: (t)s cubical-term: {X ⊢ _:AF} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} cubical-term: {X ⊢ _:AF} pi1: fst(t) csm-ap-type: (AF)s csm-ap-term: (t)s and: P ∧ Q all: x:A. B[x] squash: T prop: subtype_rel: A ⊆B uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  csm-ap_wf I-cube_wf list_wf coordinate_name_wf equal_wf squash_wf true_wf cube-set-restriction_wf subtype_rel-equal csm-ap-restriction subtype_rel_self iff_weakening_equal name-morph_wf all_wf cubical-term_wf cubical-type_wf cube-set-map_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule dependent_set_memberEquality lambdaEquality applyEquality hypothesisEquality extract_by_obid isectElimination hypothesis lambdaFormation imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination independent_isectElimination instantiate because_Cache natural_numberEquality imageMemberEquality baseClosed independent_functionElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[Delta,Gamma:CubicalSet].  \mforall{}[s:Delta  {}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[t:\{Gamma  \mvdash{}  \_:A\}].
    ((t)s  \mmember{}  \{Delta  \mvdash{}  \_:(A)s\})



Date html generated: 2018_05_23-PM-06_28_54
Last ObjectModification: 2018_05_16-PM-02_30_25

Theory : cubical!sets


Home Index