Nuprl Lemma : csm-ap-restriction
∀X,Y:CubicalSet. ∀s:X ⟶ Y. ∀I,J:Cname List. ∀f:name-morph(I;J). ∀a:X(I).  (f((s)a) = (s)f(a) ∈ Y(J))
Proof
Definitions occuring in Statement : 
cube-set-restriction: f(s), 
csm-ap: (s)x, 
I-cube: X(I), 
cube-set-map: A ⟶ B, 
cubical-set: CubicalSet, 
name-morph: name-morph(I;J), 
coordinate_name: Cname, 
list: T List, 
all: ∀x:A. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
cubical-set: CubicalSet, 
cube-set-map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
I-cube: X(I), 
functor-ob: functor-ob(F), 
pi1: fst(t), 
functor-arrow: functor-arrow(F), 
type-cat: TypeCat, 
cat-comp: cat-comp(C), 
cat-arrow: cat-arrow(C), 
name-cat: NameCat, 
cat-ob: cat-ob(C), 
pi2: snd(t), 
compose: f o g, 
cube-set-restriction: f(s), 
csm-ap: (s)x, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
I-cube_wf, 
name-morph_wf, 
list_wf, 
coordinate_name_wf, 
cube-set-map_wf, 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
functionEquality, 
lemma_by_obid, 
isectElimination
Latex:
\mforall{}X,Y:CubicalSet.  \mforall{}s:X  {}\mrightarrow{}  Y.  \mforall{}I,J:Cname  List.  \mforall{}f:name-morph(I;J).  \mforall{}a:X(I).    (f((s)a)  =  (s)f(a))
Date html generated:
2016_06_16-PM-05_37_36
Last ObjectModification:
2015_12_28-PM-04_37_11
Theory : cubical!sets
Home
Index