Step
*
of Lemma
csm-ap-restriction
∀X,Y:CubicalSet. ∀s:X ⟶ Y. ∀I,J:Cname List. ∀f:name-morph(I;J). ∀a:X(I). (f((s)a) = (s)f(a) ∈ Y(J))
BY
{ (Auto
THEN RepeatFor 2 (D 2)
THEN (RepeatFor 2 (D 1) THEN All Reduce)
THEN DVar `s'
THEN All (RepUR ``cat-ob cat-comp name-cat cat-arrow compose
cube-set-restriction csm-ap I-cube
type-cat functor-ob functor-arrow``)⋅
THEN (InstHyp [⌜I⌝;⌜J⌝; ⌜f⌝] (-5)⋅ THENA Auto)
THEN (ApFunToHypEquands `Z' ⌜Z a⌝ ⌜X1 J⌝ (-1)⋅ THENM Reduce (-1))
THEN Auto) }
Latex:
Latex:
\mforall{}X,Y:CubicalSet. \mforall{}s:X {}\mrightarrow{} Y. \mforall{}I,J:Cname List. \mforall{}f:name-morph(I;J). \mforall{}a:X(I). (f((s)a) = (s)f(a))
By
Latex:
(Auto
THEN RepeatFor 2 (D 2)
THEN (RepeatFor 2 (D 1) THEN All Reduce)
THEN DVar `s'
THEN All (RepUR ``cat-ob cat-comp name-cat cat-arrow compose
cube-set-restriction csm-ap I-cube
type-cat functor-ob functor-arrow``)\mcdot{}
THEN (InstHyp [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}J\mkleeneclose{}; \mkleeneopen{}f\mkleeneclose{}] (-5)\mcdot{} THENA Auto)
THEN (ApFunToHypEquands `Z' \mkleeneopen{}Z a\mkleeneclose{} \mkleeneopen{}X1 J\mkleeneclose{} (-1)\mcdot{} THENM Reduce (-1))
THEN Auto)
Home
Index