Nuprl Lemma : Kan-cubical-identity_wf

[X:CubicalSet]. ∀[A:{X ⊢ _(Kan)}]. ∀[a,b:{X ⊢ _:Kan-type(A)}].  (Kan(Id_A b) ∈ {X ⊢ _(Kan)})


Proof




Definitions occuring in Statement :  Kan-cubical-identity: Kan(Id_A b) Kan-type: Kan-type(Ak) Kan-cubical-type: {X ⊢ _(Kan)} cubical-term: {X ⊢ _:AF} cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Kan-cubical-identity: Kan(Id_A b) all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a nameset: nameset(L) so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q Kan-cubical-type: {X ⊢ _(Kan)} and: P ∧ Q cand: c∧ B
Lemmas referenced :  Kan_id_filler_wf set_wf list_wf coordinate_name_wf I-cube_wf nameset_wf int_seg_wf A-open-box_wf cubical-identity_wf Kan-type_wf subtype_rel_list cubical-type-at_wf Kan-A-filler_wf Kan_id_filler_uniform uniform-Kan-A-filler_wf equal_wf cubical-term_wf Kan-cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination functionEquality because_Cache natural_numberEquality applyEquality independent_isectElimination lambdaEquality setElimination rename sqequalRule functionExtensionality lambdaFormation dependent_set_memberEquality dependent_pairEquality independent_pairFormation equalitySymmetry hyp_replacement Error :applyLambdaEquality,  productElimination productEquality equalityTransitivity independent_functionElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_(Kan)\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:Kan-type(A)\}].    (Kan(Id\_A  a  b)  \mmember{}  \{X  \mvdash{}  \_(Kan)\})



Date html generated: 2016_10_28-PM-00_40_44
Last ObjectModification: 2016_07_12-PM-00_58_47

Theory : cubical!sets


Home Index