Nuprl Lemma : Kan-cubical-type-equal

[X:CubicalSet]. ∀[A:{X ⊢ _(Kan)}]. ∀[B:A:{X ⊢ _} × (I:(Cname List)
                                                    ⟶ alpha:X(I)
                                                    ⟶ J:(nameset(I) List)
                                                    ⟶ x:nameset(I)
                                                    ⟶ i:ℕ2
                                                    ⟶ A-open-box(X;A;I;alpha;J;x;i)
                                                    ⟶ A(alpha))].
  B ∈ {X ⊢ _(Kan)} 
  supposing A
  B
  ∈ (A:{X ⊢ _} × (I:(Cname List)
                 ⟶ alpha:X(I)
                 ⟶ J:(nameset(I) List)
                 ⟶ x:nameset(I)
                 ⟶ i:ℕ2
                 ⟶ A-open-box(X;A;I;alpha;J;x;i)
                 ⟶ A(alpha)))


Proof




Definitions occuring in Statement :  Kan-cubical-type: {X ⊢ _(Kan)} A-open-box: A-open-box(X;A;I;alpha;J;x;i) cubical-type-at: A(a) cubical-type: {X ⊢ _} I-cube: X(I) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a Kan-cubical-type: {X ⊢ _(Kan)} and: P ∧ Q prop: subtype_rel: A ⊆B all: x:A. B[x] nameset: nameset(L)
Lemmas referenced :  and_wf Kan-A-filler_wf uniform-Kan-A-filler_wf equal_wf cubical-type_wf list_wf coordinate_name_wf I-cube_wf nameset_wf int_seg_wf A-open-box_wf subtype_rel_list cubical-type-at_wf Kan-cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality hypothesis spreadEquality hypothesisEquality lemma_by_obid isectElimination instantiate productEquality functionEquality applyEquality lambdaEquality cumulativity universeEquality sqequalRule because_Cache natural_numberEquality dependent_functionElimination independent_isectElimination productElimination dependent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_(Kan)\}].  \mforall{}[B:A:\{X  \mvdash{}  \_\}  \mtimes{}  (I:(Cname  List)
                                                                                                        {}\mrightarrow{}  alpha:X(I)
                                                                                                        {}\mrightarrow{}  J:(nameset(I)  List)
                                                                                                        {}\mrightarrow{}  x:nameset(I)
                                                                                                        {}\mrightarrow{}  i:\mBbbN{}2
                                                                                                        {}\mrightarrow{}  A-open-box(X;A;I;alpha;J;x;i)
                                                                                                        {}\mrightarrow{}  A(alpha))].
    A  =  B  supposing  A  =  B



Date html generated: 2016_06_16-PM-06_44_35
Last ObjectModification: 2015_12_28-PM-04_25_26

Theory : cubical!sets


Home Index