Nuprl Lemma : csm-Kan-cubical-type_wf

[Delta,Gamma:CubicalSet]. ∀[s:Delta ⟶ Gamma]. ∀[AK:{Gamma ⊢ _(Kan)}].  ((AK)s ∈ {Delta ⊢ _(Kan)})


Proof




Definitions occuring in Statement :  csm-Kan-cubical-type: (AK)s Kan-cubical-type: {X ⊢ _(Kan)} cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Kan-cubical-type: {X ⊢ _(Kan)} csm-Kan-cubical-type: (AK)s all: x:A. B[x] top: Top subtype_rel: A ⊆B and: P ∧ Q uimplies: supposing a nameset: nameset(L) Kan-A-filler: Kan-A-filler(X;A;filler) uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler) implies:  Q name-morph: name-morph(I;J) prop: A-open-box: A-open-box(X;A;I;alpha;J;x;i) sq_stable: SqStable(P) squash: T fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube) fills-A-faces: fills-A-faces(X;A;I;alpha;bx;L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k coordinate_name: Cname int_upper: {i...} decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False less_than: a < b A-face: A-face(X;A;I;alpha) is-A-face: is-A-face(X;A;I;alpha;bx;f) spreadn: spread3 true: True iff: ⇐⇒ Q rev_implies:  Q l_member: (x ∈ l) cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) nat: ge: i ≥  uiff: uiff(P;Q) name-morph-domain: name-morph-domain(f;I) pi1: fst(t) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] A-open-box-image: A-open-box-image(X;A;I;K;f;alpha;bx) A-face-image: A-face-image(X;A;I;K;f;alpha;face) assert: b ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  Kan-cubical-type_wf cube-set-map_wf cubical-set_wf csm-ap-type_wf csm-type-at istype-void csm-ap_wf csm-A-open-box A-open-box_wf subtype_rel_list nameset_wf coordinate_name_wf int_seg_wf list_wf I-cube_wf cubical-type-at_wf istype-assert isname_wf l_member_wf name-morph_wf fills-A-open-box_wf sq_stable__l_subset decidable__equal-coordinate_name select_wf A-face_wf int_seg_properties length_wf sq_stable__l_member sq_stable__le decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma equal_wf squash_wf true_wf istype-universe list-diff_wf cname_deq_wf cons_wf nil_wf cube-set-restriction_wf face-map_wf2 csm-ap-restriction subtype_rel_self iff_weakening_equal csm-cubical-type-ap-morph cubical-type-ap-morph_wf subtype_rel-equal is-A-face_wf list-subtype map_wf subtype_base_sq set_subtype_base le_wf int_subtype_base nat_properties assert-isname sq_stable__assert subtype_rel_dep_function cons_member member_filter_2 filter_wf5 A-open-box-equal A-open-box-image_wf subtype_rel_set A-adjacent-compatible_wf not_wf l_subset_wf all_wf l_exists_wf A-face-name_wf nameset_subtype l_all_wf2 subtract_wf itermSubtract_wf int_term_value_subtract_lemma istype-le istype-less_than pairwise_wf2 subtype_rel_universe1 pi1_wf_top assert_elim bool_wf bool_subtype_base name-morph_subtype_remove1 cubical-type_wf name-comp_wf face-map-comp cube-set-restriction-comp Kan-A-filler_wf uniform-Kan-A-filler_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule dependent_set_memberEquality_alt hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType extract_by_obid isectElimination hypothesisEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType dependent_pairEquality_alt functionExtensionality dependent_functionElimination voidElimination applyEquality independent_isectElimination lambdaEquality_alt natural_numberEquality functionIsType because_Cache independent_pairFormation promote_hyp lambdaFormation_alt independent_functionElimination imageMemberEquality baseClosed imageElimination equalityIsType1 unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality hyp_replacement instantiate universeEquality productIsType cumulativity intEquality closedConclusion applyLambdaEquality functionEquality setIsType productEquality independent_pairEquality setEquality

Latex:
\mforall{}[Delta,Gamma:CubicalSet].  \mforall{}[s:Delta  {}\mrightarrow{}  Gamma].  \mforall{}[AK:\{Gamma  \mvdash{}  \_(Kan)\}].    ((AK)s  \mmember{}  \{Delta  \mvdash{}  \_(Kan)\})



Date html generated: 2019_11_05-PM-00_29_47
Last ObjectModification: 2018_11_14-AM-11_19_16

Theory : cubical!sets


Home Index