Nuprl Lemma : csm-Kan-cubical-type_wf
∀[Delta,Gamma:CubicalSet]. ∀[s:Delta ⟶ Gamma]. ∀[AK:{Gamma ⊢ _(Kan)}].  ((AK)s ∈ {Delta ⊢ _(Kan)})
Proof
Definitions occuring in Statement : 
csm-Kan-cubical-type: (AK)s, 
Kan-cubical-type: {X ⊢ _(Kan)}, 
cube-set-map: A ⟶ B, 
cubical-set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
Kan-cubical-type: {X ⊢ _(Kan)}, 
csm-Kan-cubical-type: (AK)s, 
all: ∀x:A. B[x], 
top: Top, 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
uimplies: b supposing a, 
nameset: nameset(L), 
Kan-A-filler: Kan-A-filler(X;A;filler), 
uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler), 
implies: P ⇒ Q, 
name-morph: name-morph(I;J), 
prop: ℙ, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i), 
sq_stable: SqStable(P), 
squash: ↓T, 
fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube), 
fills-A-faces: fills-A-faces(X;A;I;alpha;bx;L), 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
coordinate_name: Cname, 
int_upper: {i...}, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
less_than: a < b, 
A-face: A-face(X;A;I;alpha), 
is-A-face: is-A-face(X;A;I;alpha;bx;f), 
spreadn: spread3, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
l_member: (x ∈ l), 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
nat: ℕ, 
ge: i ≥ j , 
uiff: uiff(P;Q), 
name-morph-domain: name-morph-domain(f;I), 
pi1: fst(t), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
A-open-box-image: A-open-box-image(X;A;I;K;f;alpha;bx), 
A-face-image: A-face-image(X;A;I;K;f;alpha;face), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt
Lemmas referenced : 
Kan-cubical-type_wf, 
cube-set-map_wf, 
cubical-set_wf, 
csm-ap-type_wf, 
csm-type-at, 
istype-void, 
csm-ap_wf, 
csm-A-open-box, 
A-open-box_wf, 
subtype_rel_list, 
nameset_wf, 
coordinate_name_wf, 
int_seg_wf, 
list_wf, 
I-cube_wf, 
cubical-type-at_wf, 
istype-assert, 
isname_wf, 
l_member_wf, 
name-morph_wf, 
fills-A-open-box_wf, 
sq_stable__l_subset, 
decidable__equal-coordinate_name, 
select_wf, 
A-face_wf, 
int_seg_properties, 
length_wf, 
sq_stable__l_member, 
sq_stable__le, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
cube-set-restriction_wf, 
face-map_wf2, 
csm-ap-restriction, 
subtype_rel_self, 
iff_weakening_equal, 
csm-cubical-type-ap-morph, 
cubical-type-ap-morph_wf, 
subtype_rel-equal, 
is-A-face_wf, 
list-subtype, 
map_wf, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
nat_properties, 
assert-isname, 
sq_stable__assert, 
subtype_rel_dep_function, 
cons_member, 
member_filter_2, 
filter_wf5, 
A-open-box-equal, 
A-open-box-image_wf, 
subtype_rel_set, 
A-adjacent-compatible_wf, 
not_wf, 
l_subset_wf, 
all_wf, 
l_exists_wf, 
A-face-name_wf, 
nameset_subtype, 
l_all_wf2, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
istype-le, 
istype-less_than, 
pairwise_wf2, 
subtype_rel_universe1, 
pi1_wf_top, 
assert_elim, 
bool_wf, 
bool_subtype_base, 
name-morph_subtype_remove1, 
cubical-type_wf, 
name-comp_wf, 
face-map-comp, 
cube-set-restriction-comp, 
Kan-A-filler_wf, 
uniform-Kan-A-filler_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
dependent_set_memberEquality_alt, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
dependent_pairEquality_alt, 
functionExtensionality, 
dependent_functionElimination, 
voidElimination, 
applyEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
natural_numberEquality, 
functionIsType, 
because_Cache, 
independent_pairFormation, 
promote_hyp, 
lambdaFormation_alt, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityIsType1, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
hyp_replacement, 
instantiate, 
universeEquality, 
productIsType, 
cumulativity, 
intEquality, 
closedConclusion, 
applyLambdaEquality, 
functionEquality, 
setIsType, 
productEquality, 
independent_pairEquality, 
setEquality
Latex:
\mforall{}[Delta,Gamma:CubicalSet].  \mforall{}[s:Delta  {}\mrightarrow{}  Gamma].  \mforall{}[AK:\{Gamma  \mvdash{}  \_(Kan)\}].    ((AK)s  \mmember{}  \{Delta  \mvdash{}  \_(Kan)\})
Date html generated:
2019_11_05-PM-00_29_47
Last ObjectModification:
2018_11_14-AM-11_19_16
Theory : cubical!sets
Home
Index