Step
*
of Lemma
csm-Kan-cubical-type_wf
∀[Delta,Gamma:CubicalSet]. ∀[s:Delta ⟶ Gamma]. ∀[AK:{Gamma ⊢ _(Kan)}]. ((AK)s ∈ {Delta ⊢ _(Kan)})
BY
{ TACTIC:(Auto
THEN RepeatFor 2 (DVar `AK')
THEN Unfold `csm-Kan-cubical-type` 0
THEN All Reduce
THEN RenameVar `filler' (-2)
THEN MemTypeCD
THEN Reduce 0) }
1
1. Delta : CubicalSet
2. Gamma : CubicalSet
3. s : Delta ⟶ Gamma
4. A : {Gamma ⊢ _}
5. filler : I:(Cname List)
⟶ alpha:Gamma(I)
⟶ J:(nameset(I) List)
⟶ x:nameset(I)
⟶ i:ℕ2
⟶ A-open-box(Gamma;A;I;alpha;J;x;i)
⟶ A(alpha)
6. Kan-A-filler(Gamma;A;filler) ∧ uniform-Kan-A-filler(Gamma;A;filler)
⊢ <(A)s, λI,alpha. (filler I (s)alpha)> ∈ A:{Delta ⊢ _} × (I:(Cname List)
⟶ alpha:Delta(I)
⟶ J:(nameset(I) List)
⟶ x:nameset(I)
⟶ i:ℕ2
⟶ A-open-box(Delta;A;I;alpha;J;x;i)
⟶ A(alpha))
2
1. Delta : CubicalSet
2. Gamma : CubicalSet
3. s : Delta ⟶ Gamma
4. A : {Gamma ⊢ _}
5. filler : I:(Cname List)
⟶ alpha:Gamma(I)
⟶ J:(nameset(I) List)
⟶ x:nameset(I)
⟶ i:ℕ2
⟶ A-open-box(Gamma;A;I;alpha;J;x;i)
⟶ A(alpha)
6. Kan-A-filler(Gamma;A;filler) ∧ uniform-Kan-A-filler(Gamma;A;filler)
⊢ Kan-A-filler(Delta;(A)s;λI,alpha. (filler I (s)alpha)) ∧ uniform-Kan-A-filler(Delta;(A)s;λI,alpha. (filler I (s)alpha)\000C)
3
.....wf.....
1. Delta : CubicalSet
2. Gamma : CubicalSet
3. s : Delta ⟶ Gamma
4. A : {Gamma ⊢ _}
5. filler : I:(Cname List)
⟶ alpha:Gamma(I)
⟶ J:(nameset(I) List)
⟶ x:nameset(I)
⟶ i:ℕ2
⟶ A-open-box(Gamma;A;I;alpha;J;x;i)
⟶ A(alpha)
6. Kan-A-filler(Gamma;A;filler) ∧ uniform-Kan-A-filler(Gamma;A;filler)
7. p : A:{Delta ⊢ _} × (I:(Cname List)
⟶ alpha:Delta(I)
⟶ J:(nameset(I) List)
⟶ x:nameset(I)
⟶ i:ℕ2
⟶ A-open-box(Delta;A;I;alpha;J;x;i)
⟶ A(alpha))
⊢ istype(let A,filler = p
in Kan-A-filler(Delta;A;filler) ∧ uniform-Kan-A-filler(Delta;A;filler))
Latex:
Latex:
\mforall{}[Delta,Gamma:CubicalSet]. \mforall{}[s:Delta {}\mrightarrow{} Gamma]. \mforall{}[AK:\{Gamma \mvdash{} \_(Kan)\}]. ((AK)s \mmember{} \{Delta \mvdash{} \_(Kan)\})
By
Latex:
TACTIC:(Auto
THEN RepeatFor 2 (DVar `AK')
THEN Unfold `csm-Kan-cubical-type` 0
THEN All Reduce
THEN RenameVar `filler' (-2)
THEN MemTypeCD
THEN Reduce 0)
Home
Index