Nuprl Lemma : csm-ap-type_wf

[Gamma,Delta:CubicalSet]. ∀[s:Delta ⟶ Gamma]. ∀[A:{Gamma ⊢ _}].  Delta ⊢ (A)s


Proof




Definitions occuring in Statement :  csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} csm-ap-type: (AF)s and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a squash: T all: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q cand: c∧ B prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  list_wf coordinate_name_wf csm-ap_wf I-cube_wf subtype_rel-equal cube-set-restriction_wf equal_wf csm-ap-restriction iff_weakening_equal name-morph_wf name-comp_wf cube-set-restriction-comp squash_wf true_wf cube-set-map_wf all_wf id-morph_wf cube-set-restriction-id cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename productElimination dependent_set_memberEquality sqequalRule dependent_pairEquality lambdaEquality applyEquality functionExtensionality hypothesisEquality extract_by_obid isectElimination hypothesis because_Cache independent_isectElimination instantiate imageElimination universeEquality dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_functionElimination functionEquality lambdaFormation independent_pairFormation spreadEquality productEquality axiomEquality isect_memberEquality

Latex:
\mforall{}[Gamma,Delta:CubicalSet].  \mforall{}[s:Delta  {}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    Delta  \mvdash{}  (A)s



Date html generated: 2018_05_23-PM-06_28_45
Last ObjectModification: 2018_05_16-PM-02_30_19

Theory : cubical!sets


Home Index