Nuprl Lemma : csm-cubical-identity
∀X,Delta:CubicalSet. ∀s:Delta ⟶ X. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}.
  (((Id_A a b))s
  = (Id_(A)s (a)s (b)s)
  ∈ (A:I:(Cname List) ⟶ Delta(I) ⟶ Type × (I:(Cname List)
                                            ⟶ J:(Cname List)
                                            ⟶ f:name-morph(I;J)
                                            ⟶ a:Delta(I)
                                            ⟶ (A I a)
                                            ⟶ (A J f(a)))))
Proof
Definitions occuring in Statement : 
cubical-identity: (Id_A a b)
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:AF}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube-set-restriction: f(s)
, 
I-cube: X(I)
, 
cube-set-map: A ⟶ B
, 
cubical-set: CubicalSet
, 
name-morph: name-morph(I;J)
, 
coordinate_name: Cname
, 
list: T List
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
cubical-type: {X ⊢ _}
, 
csm-ap-type: (AF)s
, 
cubical-identity: (Id_A a b)
, 
cubical-path: cubical-path(X;A;a;b;I;alpha)
, 
squash: ↓T
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
and: P ∧ Q
, 
I-path: I-path(X;A;a;b;I;alpha)
, 
path-eq: path-eq(X;A;I;alpha;p;q)
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
top: Top
, 
cand: A c∧ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
named-path: named-path(X;A;a;b;I;alpha;z)
, 
quotient: x,y:A//B[x; y]
, 
I-path-morph: I-path-morph(X;A;I;K;f;alpha;p)
, 
named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w)
Lemmas referenced : 
csm-ap-type_wf, 
I-cube_wf, 
list_wf, 
coordinate_name_wf, 
cubical-path_wf, 
csm-ap_wf, 
name-morph_wf, 
cube-set-restriction_wf, 
cubical-term_wf, 
cubical-type_wf, 
cube-set-map_wf, 
cubical-set_wf, 
csm-I-path, 
quotient_wf, 
squash_wf, 
equiv_rel_wf, 
path-eq-equiv, 
equal_wf, 
true_wf, 
cons_wf, 
csm-ap-restriction, 
iota_wf, 
csm-cubical-type-ap-morph, 
cubical-type-ap-morph_wf, 
rename-one-name_wf, 
l_member_wf, 
subtype_rel_self, 
iff_weakening_equal, 
cube-set-restriction-comp, 
rename-one-iota, 
cubical-type-at_wf, 
subtype_rel-equal, 
and_wf, 
path-eq_wf, 
I-path_wf, 
fresh-cname_wf, 
named-path_wf, 
equal-named-paths, 
fresh-cname-not-member2, 
named-path-morph_wf, 
istype-universe, 
extend-name-morph_wf, 
cubical-type-ap-morph-comp, 
not_wf, 
name-comp_wf, 
extend-name-morph-rename-one, 
extend-name-morph-iota, 
istype-void, 
csm-type-at, 
subtype_quotient
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
sqequalRule, 
dependent_pairEquality_alt, 
lambdaEquality_alt, 
universeIsType, 
because_Cache, 
functionIsType, 
applyEquality, 
inhabitedIsType, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
imageElimination, 
independent_isectElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
independent_functionElimination, 
independent_pairFormation, 
natural_numberEquality, 
instantiate, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
promote_hyp, 
equalityIstype, 
productIsType, 
sqequalBase, 
setEquality, 
isect_memberEquality_alt, 
closedConclusion
Latex:
\mforall{}X,Delta:CubicalSet.  \mforall{}s:Delta  {}\mrightarrow{}  X.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.
    (((Id\_A  a  b))s  =  (Id\_(A)s  (a)s  (b)s))
Date html generated:
2019_11_06-PM-00_52_24
Last ObjectModification:
2018_12_10-PM-01_54_49
Theory : cubical!sets
Home
Index