Nuprl Lemma : csm-cubical-identity

X,Delta:CubicalSet. ∀s:Delta ⟶ X. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}.
  (((Id_A b))s
  (Id_(A)s (a)s (b)s)
  ∈ (A:I:(Cname List) ⟶ Delta(I) ⟶ Type × (I:(Cname List)
                                            ⟶ J:(Cname List)
                                            ⟶ f:name-morph(I;J)
                                            ⟶ a:Delta(I)
                                            ⟶ (A a)
                                            ⟶ (A f(a)))))


Proof




Definitions occuring in Statement :  cubical-identity: (Id_A b) csm-ap-term: (t)s cubical-term: {X ⊢ _:AF} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube-set-restriction: f(s) I-cube: X(I) cube-set-map: A ⟶ B cubical-set: CubicalSet name-morph: name-morph(I;J) coordinate_name: Cname list: List all: x:A. B[x] apply: a function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] cubical-type: {X ⊢ _} csm-ap-type: (AF)s cubical-identity: (Id_A b) cubical-path: cubical-path(X;A;a;b;I;alpha) squash: T uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: and: P ∧ Q I-path: I-path(X;A;a;b;I;alpha) path-eq: path-eq(X;A;I;alpha;p;q) cubical-type-at: A(a) pi1: fst(t) top: Top cand: c∧ B not: ¬A implies:  Q false: False true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q named-path: named-path(X;A;a;b;I;alpha;z) quotient: x,y:A//B[x; y] I-path-morph: I-path-morph(X;A;I;K;f;alpha;p) named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w)
Lemmas referenced :  csm-ap-type_wf I-cube_wf list_wf coordinate_name_wf cubical-path_wf csm-ap_wf name-morph_wf cube-set-restriction_wf cubical-term_wf cubical-type_wf cube-set-map_wf cubical-set_wf csm-I-path quotient_wf squash_wf equiv_rel_wf path-eq-equiv equal_wf true_wf cons_wf csm-ap-restriction iota_wf csm-cubical-type-ap-morph cubical-type-ap-morph_wf rename-one-name_wf l_member_wf subtype_rel_self iff_weakening_equal cube-set-restriction-comp rename-one-iota cubical-type-at_wf subtype_rel-equal and_wf path-eq_wf I-path_wf fresh-cname_wf named-path_wf equal-named-paths fresh-cname-not-member2 named-path-morph_wf istype-universe extend-name-morph_wf cubical-type-ap-morph-comp not_wf name-comp_wf extend-name-morph-rename-one extend-name-morph-iota istype-void csm-type-at subtype_quotient
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis setElimination rename productElimination sqequalRule dependent_pairEquality_alt lambdaEquality_alt universeIsType because_Cache functionIsType applyEquality inhabitedIsType dependent_functionElimination equalityTransitivity equalitySymmetry lambdaEquality imageElimination independent_isectElimination functionEquality cumulativity universeEquality imageMemberEquality baseClosed isect_memberEquality voidElimination voidEquality lambdaFormation independent_functionElimination independent_pairFormation natural_numberEquality instantiate dependent_set_memberEquality hyp_replacement applyLambdaEquality pointwiseFunctionalityForEquality pertypeElimination promote_hyp equalityIstype productIsType sqequalBase setEquality isect_memberEquality_alt closedConclusion

Latex:
\mforall{}X,Delta:CubicalSet.  \mforall{}s:Delta  {}\mrightarrow{}  X.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.
    (((Id\_A  a  b))s  =  (Id\_(A)s  (a)s  (b)s))



Date html generated: 2019_11_06-PM-00_52_24
Last ObjectModification: 2018_12_10-PM-01_54_49

Theory : cubical!sets


Home Index