Nuprl Lemma : csm-I-path

X,Delta:CubicalSet. ∀s:Delta ⟶ X. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}. ∀I:Cname List. ∀alpha:Delta(I).
  (I-path(Delta;(A)s;(a)s;(b)s;I;alpha) I-path(X;A;a;b;I;(s)alpha) ∈ Type)


Proof




Definitions occuring in Statement :  I-path: I-path(X;A;a;b;I;alpha) csm-ap-term: (t)s cubical-term: {X ⊢ _:AF} csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-ap: (s)x I-cube: X(I) cube-set-map: A ⟶ B cubical-set: CubicalSet coordinate_name: Cname list: List all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] prop: so_lambda: λ2x.t[x] uall: [x:A]. B[x] member: t ∈ T I-path: I-path(X;A;a;b;I;alpha) all: x:A. B[x] csm-ap-type: (AF)s cubical-type: {X ⊢ _} pi1: fst(t) cubical-type-at: A(a) named-path: named-path(X;A;a;b;I;alpha;z) implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True squash: T name-path-endpoints: name-path-endpoints(X;A;a;b;I;alpha;z;omega) csm-ap-term: (t)s cubical-term: {X ⊢ _:AF} int_seg: {i..j-} coordinate_name: Cname int_upper: {i...} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False
Lemmas referenced :  cubical-set_wf cube-set-map_wf cubical-term_wf list_wf I-cube_wf l_member_wf not_wf coordinate_name_wf set_wf csm-ap-type_wf iff_weakening_equal csm-ap-restriction iota_wf cube-set-restriction_wf csm-ap_wf true_wf squash_wf equal_wf cons_wf csm-cubical-type-ap-morph cubical-type-at_wf subtype_rel_self istype-universe cube-set-restriction-comp face-map_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than iota-identity cube-set-restriction-id cubical-type-ap-morph_wf subtype_rel-equal
Rules used in proof :  because_Cache hypothesisEquality lambdaEquality sqequalRule hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid introduction productEquality cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productElimination rename setElimination setEquality independent_functionElimination independent_isectElimination baseClosed imageMemberEquality natural_numberEquality dependent_functionElimination universeEquality equalitySymmetry equalityTransitivity imageElimination functionExtensionality applyEquality Error :memTop,  lambdaEquality_alt universeIsType instantiate independent_pairFormation inhabitedIsType lambdaFormation_alt dependent_set_memberEquality_alt unionElimination approximateComputation dependent_pairFormation_alt voidElimination productIsType equalityIstype hyp_replacement applyLambdaEquality

Latex:
\mforall{}X,Delta:CubicalSet.  \mforall{}s:Delta  {}\mrightarrow{}  X.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.  \mforall{}I:Cname  List.  \mforall{}alpha:Delta(I).
    (I-path(Delta;(A)s;(a)s;(b)s;I;alpha)  =  I-path(X;A;a;b;I;(s)alpha))



Date html generated: 2020_05_21-AM-11_13_28
Last ObjectModification: 2020_01_15-PM-01_14_19

Theory : cubical!sets


Home Index