Nuprl Lemma : equal-I-paths

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[p,q:I-path(X;A;a;b;I;alpha)].
  q ∈ I-path(X;A;a;b;I;alpha) 
  supposing ((fst(p)) (fst(q)) ∈ Cname) ∧ ((snd(p)) (snd(q)) ∈ A(iota(fst(p))(alpha)))


Proof




Definitions occuring in Statement :  I-path: I-path(X;A;a;b;I;alpha) cubical-term: {X ⊢ _:AF} cubical-type-at: A(a) cubical-type: {X ⊢ _} cube-set-restriction: f(s) I-cube: X(I) cubical-set: CubicalSet iota: iota(x) coordinate_name: Cname cons: [a b] list: List uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a I-path: I-path(X;A;a;b;I;alpha) pi1: fst(t) pi2: snd(t) and: P ∧ Q not: ¬A implies:  Q false: False member: t ∈ T prop: named-path: named-path(X;A;a;b;I;alpha;z) subtype_rel: A ⊆B top: Top squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q iota: iota(x)
Lemmas referenced :  l_member_wf coordinate_name_wf not_wf equal-named-paths named-path_wf equal_wf cubical-type-at_wf cons_wf cube-set-restriction_wf iota_wf subtype_rel-equal pi1_wf_top iff_weakening_equal I-path_wf I-cube_wf list_wf cubical-term_wf cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalHypSubstitution productElimination thin sqequalRule dependent_pairEquality cut setElimination rename lambdaFormation hypothesis independent_functionElimination voidElimination introduction extract_by_obid isectElimination hypothesisEquality because_Cache dependent_set_memberEquality equalityTransitivity equalitySymmetry independent_isectElimination productEquality applyEquality independent_pairEquality isect_memberEquality voidEquality lambdaEquality imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].
\mforall{}[p,q:I-path(X;A;a;b;I;alpha)].
    p  =  q  supposing  ((fst(p))  =  (fst(q)))  \mwedge{}  ((snd(p))  =  (snd(q)))



Date html generated: 2017_10_05-PM-03_54_41
Last ObjectModification: 2017_07_28-AM-11_27_44

Theory : cubical!sets


Home Index