Nuprl Lemma : cubical-type-equal

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:A:I:(Cname List) ⟶ X(I) ⟶ Type × (I:(Cname List)
                                                                      ⟶ J:(Cname List)
                                                                      ⟶ f:name-morph(I;J)
                                                                      ⟶ a:X(I)
                                                                      ⟶ (A a)
                                                                      ⟶ (A f(a)))].
  B ∈ {X ⊢ _} 
  supposing A
  B
  ∈ (A:I:(Cname List) ⟶ X(I) ⟶ Type × (I:(Cname List)
                                        ⟶ J:(Cname List)
                                        ⟶ f:name-morph(I;J)
                                        ⟶ a:X(I)
                                        ⟶ (A a)
                                        ⟶ (A f(a))))


Proof




Definitions occuring in Statement :  cubical-type: {X ⊢ _} cube-set-restriction: f(s) I-cube: X(I) cubical-set: CubicalSet name-morph: name-morph(I;J) coordinate_name: Cname list: List uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cubical-type: {X ⊢ _} and: P ∧ Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_apply: x[s] all: x:A. B[x] prop:
Lemmas referenced :  all_wf list_wf coordinate_name_wf I-cube_wf equal_wf id-morph_wf subtype_rel-equal cube-set-restriction_wf cube-set-restriction-id iff_weakening_equal name-morph_wf name-comp_wf cube-set-restriction-comp cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality hypothesis productElimination sqequalRule productEquality extract_by_obid isectElimination lambdaEquality hypothesisEquality applyEquality functionExtensionality because_Cache independent_isectElimination instantiate imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_functionElimination dependent_functionElimination functionEquality cumulativity dependent_pairEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:A:I:(Cname  List)  {}\mrightarrow{}  X(I)  {}\mrightarrow{}  Type  \mtimes{}  (I:(Cname  List)
                                                                                                                                            {}\mrightarrow{}  J:(Cname  List)
                                                                                                                                            {}\mrightarrow{}  f:name-morph(I;J)
                                                                                                                                            {}\mrightarrow{}  a:X(I)
                                                                                                                                            {}\mrightarrow{}  (A  I  a)
                                                                                                                                            {}\mrightarrow{}  (A  J  f(a)))].
    A  =  B  supposing  A  =  B



Date html generated: 2017_10_05-AM-10_12_43
Last ObjectModification: 2017_07_28-AM-11_18_28

Theory : cubical!sets


Home Index