Step
*
of Lemma
csm-Kan-id
∀[Gamma:CubicalSet]. ∀[AK:{Gamma ⊢ _(Kan)}]. ((AK)1(Gamma) = AK ∈ {Gamma ⊢ _(Kan)})
BY
{ (Auto
THEN Symmetry
THEN D -1
THEN EqTypeCD
THEN Try (Trivial)
THEN Auto
THEN D 2
THEN (Assert Gamma ∈ CubicalSet BY
Trivial)
THEN RepeatFor 2 (D 1)
THEN All Reduce
THEN RepUR ``csm-Kan-cubical-type`` 0
THEN EqCD
THEN Auto
THEN RenameVar `filler' 6) }
1
1. X : L:(Cname List) ⟶ Type
2. G1 : I:(Cname List) ⟶ J:(Cname List) ⟶ name-morph(I;J) ⟶ (X I) ⟶ (X J)
3. ∀I,J,K:Cname List. ∀f:name-morph(I;J). ∀g:name-morph(J;K).
((G1 I K (f o g)) = ((G1 J K g) o (G1 I J f)) ∈ ((X I) ⟶ (X K)))
4. ∀I:Cname List. ((G1 I I 1) = (λx.x) ∈ ((X I) ⟶ (X I)))
5. A : {<X, G1> ⊢ _}
6. filler : I:(Cname List)
⟶ alpha:<X, G1>(I)
⟶ J:(nameset(I) List)
⟶ x:nameset(I)
⟶ i:ℕ2
⟶ A-open-box(<X, G1>;A;I;alpha;J;x;i)
⟶ A(alpha)
7. Kan-A-filler(<X, G1>;A;filler)
8. uniform-Kan-A-filler(<X, G1>;A;filler)
9. <X, G1> ∈ CubicalSet
⊢ filler
= (λI,alpha. (filler I (1(<X, G1>))alpha))
∈ (I:(Cname List)
⟶ alpha:<X, G1>(I)
⟶ J:(nameset(I) List)
⟶ x:nameset(I)
⟶ i:ℕ2
⟶ A-open-box(<X, G1>;A;I;alpha;J;x;i)
⟶ A(alpha))
Latex:
Latex:
\mforall{}[Gamma:CubicalSet]. \mforall{}[AK:\{Gamma \mvdash{} \_(Kan)\}]. ((AK)1(Gamma) = AK)
By
Latex:
(Auto
THEN Symmetry
THEN D -1
THEN EqTypeCD
THEN Try (Trivial)
THEN Auto
THEN D 2
THEN (Assert Gamma \mmember{} CubicalSet BY
Trivial)
THEN RepeatFor 2 (D 1)
THEN All Reduce
THEN RepUR ``csm-Kan-cubical-type`` 0
THEN EqCD
THEN Auto
THEN RenameVar `filler' 6)
Home
Index