Nuprl Lemma : csm-Kan-id

[Gamma:CubicalSet]. ∀[AK:{Gamma ⊢ _(Kan)}].  ((AK)1(Gamma) AK ∈ {Gamma ⊢ _(Kan)})


Proof




Definitions occuring in Statement :  csm-Kan-cubical-type: (AK)s Kan-cubical-type: {X ⊢ _(Kan)} csm-id: 1(X) cubical-set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Kan-cubical-type: {X ⊢ _(Kan)} cubical-set: CubicalSet csm-Kan-cubical-type: (AK)s and: P ∧ Q squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q all: x:A. B[x] nameset: nameset(L) csm-ap: (s)x csm-id: 1(X) identity-trans: identity-trans(C;D;F) mk-nat-trans: |→ T[x] cat-id: cat-id(C) pi1: fst(t) pi2: snd(t) type-cat: TypeCat
Lemmas referenced :  equal_wf squash_wf true_wf cubical-type_wf csm-ap-id-type iff_weakening_equal list_wf coordinate_name_wf I-cube_wf nameset_wf int_seg_wf A-open-box_wf subtype_rel_list cubical-type-at_wf Kan-A-filler_wf uniform-Kan-A-filler_wf Kan-cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut equalitySymmetry sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality productElimination hypothesisEquality sqequalRule dependent_pairEquality applyEquality instantiate lambdaEquality imageElimination extract_by_obid isectElimination equalityTransitivity hypothesis universeEquality because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination functionEquality dependent_functionElimination productEquality functionExtensionality isect_memberEquality axiomEquality

Latex:
\mforall{}[Gamma:CubicalSet].  \mforall{}[AK:\{Gamma  \mvdash{}  \_(Kan)\}].    ((AK)1(Gamma)  =  AK)



Date html generated: 2017_10_05-AM-10_23_54
Last ObjectModification: 2017_07_28-AM-11_22_03

Theory : cubical!sets


Home Index