Nuprl Lemma : csm-ap-id-type

[Gamma:CubicalSet]. ∀[A:{Gamma ⊢ _}].  ((A)1(Gamma) A ∈ {Gamma ⊢ _})


Proof




Definitions occuring in Statement :  csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-id: 1(X) cubical-set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} and: P ∧ Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_apply: x[s] all: x:A. B[x] cubical-set: CubicalSet csm-id: 1(X) csm-ap-type: (AF)s type-cat: TypeCat identity-trans: identity-trans(C;D;F) csm-ap: (s)x top: Top I-cube: X(I) functor-ob: ob(F) pi1: fst(t)
Lemmas referenced :  all_wf list_wf coordinate_name_wf I-cube_wf equal_wf id-morph_wf subtype_rel-equal cube-set-restriction_wf squash_wf true_wf cube-set-restriction-id iff_weakening_equal name-morph_wf name-comp_wf cube-set-restriction-comp cubical-type_wf cubical-set_wf ap_mk_nat_trans_lemma cat_id_tuple_lemma ob_pair_lemma eta_conv subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut equalitySymmetry sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality hypothesis productElimination sqequalRule productEquality extract_by_obid isectElimination lambdaEquality hypothesisEquality applyEquality functionExtensionality because_Cache independent_isectElimination instantiate imageElimination equalityTransitivity universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination dependent_functionElimination isect_memberEquality axiomEquality voidElimination voidEquality dependent_pairEquality functionEquality cumulativity

Latex:
\mforall{}[Gamma:CubicalSet].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    ((A)1(Gamma)  =  A)



Date html generated: 2017_10_05-AM-10_12_52
Last ObjectModification: 2017_07_28-AM-11_18_33

Theory : cubical!sets


Home Index