Nuprl Lemma : ap_mk_nat_trans_lemma
∀z,T:Top.  (b |→ T[b] z ~ T[z])
Proof
Definitions occuring in Statement : 
mk-nat-trans: x |→ T[x]
, 
top: Top
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
mk-nat-trans: x |→ T[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalRule, 
extract_by_obid, 
introduction, 
hypothesis, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}z,T:Top.    (b  |\mrightarrow{}  T[b]  z  \msim{}  T[z])
Date html generated:
2017_01_11-AM-09_18_08
Last ObjectModification:
2017_01_10-PM-04_45_24
Theory : small!categories
Home
Index