Nuprl Lemma : csm-ap-csm-comp

Gamma,Delta,Z,s1,s2,I,alpha:Top.  ((s2 s1)alpha (s2)(s1)alpha)


Proof




Definitions occuring in Statement :  csm-ap: (s)x csm-comp: F top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] csm-ap: (s)x csm-comp: F type-cat: TypeCat trans-comp: trans-comp(C;D;F;G;H;t1;t2) cat-comp: cat-comp(C) pi2: snd(t) compose: g member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule hypothesis lemma_by_obid

Latex:
\mforall{}Gamma,Delta,Z,s1,s2,I,alpha:Top.    ((s2  o  s1)alpha  \msim{}  (s2)(s1)alpha)



Date html generated: 2016_06_16-PM-05_36_29
Last ObjectModification: 2015_12_28-PM-04_37_30

Theory : cubical!sets


Home Index