Step
*
1
of Lemma
cu-box-in-box_wf
1. I : Cname List
2. J : nameset(I) List
3. x : nameset(I)
4. d : â2
5. box : I-face(cđ;I) List
6. adjacent-compatible(cđ;I;box)
⧠(ÂŹ(x â J))
⧠l_subset(Cname;J;I)
⧠((ây:nameset(J). âc:â2. (âfâbox. face-name(f) = <y, c> â (nameset(I) Ă â2)))
⧠(âfâbox. face-name(f) = <x, d> â (nameset(I) Ă â2))
⧠(âfâbox.ÂŹ(face-name(f) = <x, 1 - d> â (nameset(I) Ă â2))))
⧠(âfâbox.(fst(f) â [x / J]))
⧠(âf1,f2âbox. ÂŹ(face-name(f1) = face-name(f2) â (nameset(I) Ă â2)))
⢠{u:i:â||box|| âś cu-cube-family(cube(box[i]);I-[dimension(box[i])];1)|
âi,j:â||box||.
((ÂŹ(dimension(box[i]) = dimension(box[j]) â Cname))
â (cu-cube-restriction(cube(box[i]);I-[dimension(box[i])];I-[dimension(box[i]); dimension(box[j])];
(dimension(box[j]):=direction(box[j]));1;u i)
= cu-cube-restriction(cube(box[j]);I-[dimension(box[j])];I-[dimension(box[j]); dimension(box[i])];
(dimension(box[i]):=direction(box[i]));1;u j)
â cu-cube-family(cube(box[i]);I-[dimension(box[i]);
dimension(box[j])];(1 o (dimension(box[j]):=direction(box[j]))))))} â Type
BY
{ TACTIC:MemCD }
1
.....subterm..... T:t
1:n
1. I : Cname List
2. J : nameset(I) List
3. x : nameset(I)
4. d : â2
5. box : I-face(cđ;I) List
6. adjacent-compatible(cđ;I;box)
⧠(ÂŹ(x â J))
⧠l_subset(Cname;J;I)
⧠((ây:nameset(J). âc:â2. (âfâbox. face-name(f) = <y, c> â (nameset(I) Ă â2)))
⧠(âfâbox. face-name(f) = <x, d> â (nameset(I) Ă â2))
⧠(âfâbox.ÂŹ(face-name(f) = <x, 1 - d> â (nameset(I) Ă â2))))
⧠(âfâbox.(fst(f) â [x / J]))
⧠(âf1,f2âbox. ÂŹ(face-name(f1) = face-name(f2) â (nameset(I) Ă â2)))
⢠i:â||box|| âś cu-cube-family(cube(box[i]);I-[dimension(box[i])];1) â Type
2
.....subterm..... T:t
2:n
1. I : Cname List
2. J : nameset(I) List
3. x : nameset(I)
4. d : â2
5. box : I-face(cđ;I) List
6. adjacent-compatible(cđ;I;box)
⧠(ÂŹ(x â J))
⧠l_subset(Cname;J;I)
⧠((ây:nameset(J). âc:â2. (âfâbox. face-name(f) = <y, c> â (nameset(I) Ă â2)))
⧠(âfâbox. face-name(f) = <x, d> â (nameset(I) Ă â2))
⧠(âfâbox.ÂŹ(face-name(f) = <x, 1 - d> â (nameset(I) Ă â2))))
⧠(âfâbox.(fst(f) â [x / J]))
⧠(âf1,f2âbox. ÂŹ(face-name(f1) = face-name(f2) â (nameset(I) Ă â2)))
7. u : i:â||box|| âś cu-cube-family(cube(box[i]);I-[dimension(box[i])];1)
⢠âi,j:â||box||.
((ÂŹ(dimension(box[i]) = dimension(box[j]) â Cname))
â (cu-cube-restriction(cube(box[i]);I-[dimension(box[i])];I-[dimension(box[i]); dimension(box[j])];
(dimension(box[j]):=direction(box[j]));1;u i)
= cu-cube-restriction(cube(box[j]);I-[dimension(box[j])];I-[dimension(box[j]); dimension(box[i])];
(dimension(box[i]):=direction(box[i]));1;u j)
â cu-cube-family(cube(box[i]);I-[dimension(box[i]);
dimension(box[j])];(1 o (dimension(box[j]):=direction(box[j])))))) â Type
Latex:
Latex:
1. I : Cname List
2. J : nameset(I) List
3. x : nameset(I)
4. d : \mBbbN{}2
5. box : I-face(c\mBbbU{};I) List
6. adjacent-compatible(c\mBbbU{};I;box)
\mwedge{} (\mneg{}(x \mmember{} J))
\mwedge{} l\_subset(Cname;J;I)
\mwedge{} ((\mforall{}y:nameset(J). \mforall{}c:\mBbbN{}2. (\mexists{}f\mmember{}box. face-name(f) = <y, c>))
\mwedge{} (\mexists{}f\mmember{}box. face-name(f) = <x, d>)
\mwedge{} (\mforall{}f\mmember{}box.\mneg{}(face-name(f) = <x, 1 - d>)))
\mwedge{} (\mforall{}f\mmember{}box.(fst(f) \mmember{} [x / J]))
\mwedge{} (\mforall{}f1,f2\mmember{}box. \mneg{}(face-name(f1) = face-name(f2)))
\mvdash{} \{u:i:\mBbbN{}||box|| {}\mrightarrow{} cu-cube-family(cube(box[i]);I-[dimension(box[i])];1)|
\mforall{}i,j:\mBbbN{}||box||.
((\mneg{}(dimension(box[i]) = dimension(box[j])))
{}\mRightarrow{} (cu-cube-restriction(cube(box[i]);I-[dimension(box[i])];I-[dimension(box[i]);
dimension(box[j])];
(dimension(box[j]):=direction(box[j]));1;u i)
= cu-cube-restriction(cube(box[j]);I-[dimension(box[j])];I-[dimension(box[j]);
dimension(box[i])];
(dimension(box[i]):=direction(box[i]));1;u j)))\} \mmember{} Type
By
Latex:
TACTIC:MemCD
Home
Index