Nuprl Lemma : cu-box-in-box_wf

[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[d:ℕ2]. ∀[box:open_box(c𝕌;I;J;x;d)].
  (cu-box-in-box(I;box) ∈ Type)


Proof




Definitions occuring in Statement :  cu-box-in-box: cu-box-in-box(I;box) cubical-universe: c𝕌 open_box: open_box(X;I;J;x;i) nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T open_box: open_box(X;I;J;x;i) cu-box-in-box: cu-box-in-box(I;box) subtype_rel: A ⊆B uimplies: supposing a nameset: nameset(L) and: P ∧ Q int_seg: {i..j-} guard: {T} lelt: i ≤ j < k all: x:A. B[x] implies:  Q sq_stable: SqStable(P) squash: T coordinate_name: Cname int_upper: {i...} decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: less_than: a < b I-face: I-face(X;I) face-dimension: dimension(f) face-cube: cube(f) pi2: snd(t) pi1: fst(t) true: True iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B adjacent-compatible: adjacent-compatible(X;I;L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] face-compatible: face-compatible(X;I;f1;f2) spreadn: spread3 face-direction: direction(f) id-morph: 1 face-map: (x:=i) name-comp: (f g) compose: g uext: uext(g) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b isname: isname(z) le_int: i ≤j lt_int: i <j so_lambda: λ2x.t[x] so_apply: x[s] nequal: a ≠ b ∈ 
Lemmas referenced :  open_box_wf cubical-universe_wf subtype_rel_list nameset_wf coordinate_name_wf int_seg_wf list_wf length_wf I-face_wf select_wf int_seg_properties sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma equal_wf cu-cube-family_wf list-diff_wf cname_deq_wf cons_wf nil_wf id-morph_wf not_wf face-dimension_wf istype-int istype-void face-cube_wf face-map_wf2 face-direction_wf name-morph_wf name-comp_wf subtype_rel_wf squash_wf true_wf istype-universe list-diff2 iff_weakening_equal subtype_rel_self cu-cube-restriction_wf subtype_rel-equal select_member pairwise-implies face-compatible_wf cubical-set_wf face-compatible-symmetry intformeq_wf int_formula_prop_eq_lemma istype-le I-cube_wf cu-cube-family-comp name-morph-ext eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot neg_assert_of_eq_int decidable__equal_int int_subtype_base int_seg_subtype_special int_seg_cases isname-name nsub2_subtype_extd-nameset member-list-diff member_singleton set_subtype_base le_wf l_member_wf cons_member nameset_subtype_extd-nameset list_subtype_base list-diff2-sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType instantiate extract_by_obid isectElimination hypothesisEquality applyEquality independent_isectElimination lambdaEquality_alt inhabitedIsType isect_memberEquality_alt isectIsTypeImplies natural_numberEquality setEquality functionEquality productElimination because_Cache dependent_functionElimination independent_functionElimination lambdaFormation imageMemberEquality baseClosed imageElimination unionElimination approximateComputation dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation lambdaFormation_alt dependent_pairFormation_alt universeEquality cumulativity functionIsType equalityIsType1 applyLambdaEquality dependent_set_memberEquality_alt equalityElimination equalityIsType3 promote_hyp hypothesis_subsumption equalityIsType2 closedConclusion inlFormation_alt inrFormation_alt unionIsType

Latex:
\mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[d:\mBbbN{}2].  \mforall{}[box:open\_box(c\mBbbU{};I;J;x;d)].
    (cu-box-in-box(I;box)  \mmember{}  Type)



Date html generated: 2019_11_06-PM-00_54_10
Last ObjectModification: 2018_11_12-PM-05_53_07

Theory : cubical!sets


Home Index