Nuprl Lemma : open_box_wf

[X:CubicalSet]. ∀[I,J:Cname List]. ∀[x:nameset(I)]. ∀[i:ℕ2].  (open_box(X;I;J;x;i) ∈ Type)


Proof




Definitions occuring in Statement :  open_box: open_box(X;I;J;x;i) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T open_box: open_box(X;I;J;x;i) and: P ∧ Q prop: nameset: nameset(L) so_lambda: λ2x.t[x] all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k guard: {T} implies:  Q sq_stable: SqStable(P) squash: T coordinate_name: Cname int_upper: {i...} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top I-face: I-face(X;I) pi1: fst(t) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  cubical-set_wf pairwise_wf2 cons_wf lelt_wf decidable__lt int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le sq_stable__le decidable__equal-coordinate_name sq_stable__l_member int_seg_properties subtract_wf l_all_wf2 nameset_subtype face-name_wf equal_wf l_exists_wf int_seg_wf nameset_wf all_wf l_subset_wf coordinate_name_wf l_member_wf not_wf adjacent-compatible_wf I-face_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productEquality because_Cache setElimination rename lambdaEquality natural_numberEquality lambdaFormation independent_pairEquality applyEquality independent_isectElimination dependent_set_memberEquality independent_pairFormation productElimination dependent_functionElimination independent_functionElimination imageMemberEquality baseClosed imageElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[I,J:Cname  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].    (open\_box(X;I;J;x;i)  \mmember{}  Type)



Date html generated: 2016_06_16-PM-05_54_12
Last ObjectModification: 2016_01_18-PM-04_54_28

Theory : cubical!sets


Home Index