Nuprl Lemma : cu-cube-restriction_wf
∀[I:Cname List]. ∀[alpha:c𝕌(I)]. ∀[L,J:Cname List]. ∀[f:name-morph(L;J)]. ∀[a:name-morph(I;L)].
∀[T:cu-cube-family(alpha;L;a)].
  (cu-cube-restriction(alpha;L;J;f;a;T) ∈ cu-cube-family(alpha;J;(a o f)))
Proof
Definitions occuring in Statement : 
cu-cube-restriction: cu-cube-restriction(alpha;L;J;f;a;T)
, 
cu-cube-family: cu-cube-family(alpha;L;f)
, 
cubical-universe: c𝕌
, 
I-cube: X(I)
, 
name-comp: (f o g)
, 
name-morph: name-morph(I;J)
, 
coordinate_name: Cname
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cu-cube-restriction: cu-cube-restriction(alpha;L;J;f;a;T)
, 
cu-cube-family: cu-cube-family(alpha;L;f)
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
cubical-universe-I-cube, 
cu-cube-family_wf, 
name-morph_wf, 
list_wf, 
coordinate_name_wf, 
I-cube_wf, 
cubical-universe_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
instantiate
Latex:
\mforall{}[I:Cname  List].  \mforall{}[alpha:c\mBbbU{}(I)].  \mforall{}[L,J:Cname  List].  \mforall{}[f:name-morph(L;J)].  \mforall{}[a:name-morph(I;L)].
\mforall{}[T:cu-cube-family(alpha;L;a)].
    (cu-cube-restriction(alpha;L;J;f;a;T)  \mmember{}  cu-cube-family(alpha;J;(a  o  f)))
Date html generated:
2016_06_16-PM-08_07_34
Last ObjectModification:
2015_12_28-PM-04_11_51
Theory : cubical!sets
Home
Index