Nuprl Lemma : cubical-universe-I-cube
∀[I:Cname List]
(c𝕌(I) ~ {p:AF:{AF:A:L:(Cname List) ⟶ name-morph(I;L) ⟶ Type × (L:(Cname List)
⟶ J:(Cname List)
⟶ f:name-morph(L;J)
⟶ a:name-morph(I;L)
⟶ (A L a)
⟶ (A J (a o f)))|
let A,F = AF
in (∀K:Cname List. ∀a:name-morph(I;K). ∀u:A K a. ((F K K 1 a u) = u ∈ (A K a)))
∧ (∀L,J,K:Cname List. ∀f:name-morph(L;J). ∀g:name-morph(J;K). ∀a:name-morph(I;L). ∀u:A L a.
((F L K (f o g) a u) = (F J K g (a o f) (F L J f a u)) ∈ (A K (a o (f o g)))))}
× (L:(Cname List)
⟶ f:name-morph(I;L)
⟶ J:(nameset(L) List)
⟶ x:nameset(L)
⟶ i:ℕ2
⟶ A-open-box(unit-cube(I);AF;L;f;J;x;i)
⟶ ((fst(AF)) L f))|
let AF,filler = p
in Kan-A-filler(unit-cube(I);AF;filler) ∧ uniform-Kan-A-filler(unit-cube(I);AF;filler)} )
Proof
Definitions occuring in Statement :
cubical-universe: c𝕌
,
uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler)
,
Kan-A-filler: Kan-A-filler(X;A;filler)
,
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
,
unit-cube: unit-cube(I)
,
I-cube: X(I)
,
name-comp: (f o g)
,
id-morph: 1
,
name-morph: name-morph(I;J)
,
nameset: nameset(L)
,
coordinate_name: Cname
,
list: T List
,
int_seg: {i..j-}
,
uall: ∀[x:A]. B[x]
,
pi1: fst(t)
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
apply: f a
,
function: x:A ⟶ B[x]
,
spread: spread def,
product: x:A × B[x]
,
natural_number: $n
,
universe: Type
,
sqequal: s ~ t
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
cubical-universe: c𝕌
,
I-cube: X(I)
,
Kan-cubical-type: {X ⊢ _(Kan)}
,
functor-ob: functor-ob(F)
,
pi1: fst(t)
,
unit-cube: unit-cube(I)
,
cubical-type-at: A(a)
Lemmas referenced :
unit-cube-cubical-type,
list_wf,
coordinate_name_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
sqequalAxiom
Latex:
\mforall{}[I:Cname List]
(c\mBbbU{}(I) \msim{} \{p:AF:\{AF:A:L:(Cname List) {}\mrightarrow{} name-morph(I;L) {}\mrightarrow{} Type \mtimes{} (L:(Cname List)
{}\mrightarrow{} J:(Cname List)
{}\mrightarrow{} f:name-morph(L;J)
{}\mrightarrow{} a:name-morph(I;L)
{}\mrightarrow{} (A L a)
{}\mrightarrow{} (A J (a o f)))|
let A,F = AF
in (\mforall{}K:Cname List. \mforall{}a:name-morph(I;K). \mforall{}u:A K a. ((F K K 1 a u) = u))
\mwedge{} (\mforall{}L,J,K:Cname List. \mforall{}f:name-morph(L;J). \mforall{}g:name-morph(J;K).
\mforall{}a:name-morph(I;L). \mforall{}u:A L a.
((F L K (f o g) a u) = (F J K g (a o f) (F L J f a u))))\}
\mtimes{} (L:(Cname List)
{}\mrightarrow{} f:name-morph(I;L)
{}\mrightarrow{} J:(nameset(L) List)
{}\mrightarrow{} x:nameset(L)
{}\mrightarrow{} i:\mBbbN{}2
{}\mrightarrow{} A-open-box(unit-cube(I);AF;L;f;J;x;i)
{}\mrightarrow{} ((fst(AF)) L f))|
let AF,filler = p
in Kan-A-filler(unit-cube(I);AF;filler) \mwedge{} uniform-Kan-A-filler(unit-cube(I);AF;filler)\} \000C)
Date html generated:
2016_06_16-PM-08_06_53
Last ObjectModification:
2015_12_28-PM-04_11_57
Theory : cubical!sets
Home
Index