Nuprl Lemma : cu-cube-family-comp
∀[I:Cname List]. ∀[alpha:c𝕌(I)]. ∀[J,L,f,g:Top].  (cu-cube-family(alpha;L;(f o g)) ~ cu-cube-family(f(alpha);L;g))
Proof
Definitions occuring in Statement : 
cu-cube-family: cu-cube-family(alpha;L;f)
, 
cubical-universe: c𝕌
, 
cube-set-restriction: f(s)
, 
I-cube: X(I)
, 
name-comp: (f o g)
, 
coordinate_name: Cname
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pi1: fst(t)
, 
cubical-universe: c𝕌
, 
cube-set-restriction: f(s)
, 
cu-cube-family: cu-cube-family(alpha;L;f)
, 
pi2: snd(t)
, 
unit-cube-map: unit-cube-map(f)
, 
csm-Kan-cubical-type: (AK)s
, 
csm-ap-type: (AF)s
, 
csm-ap: (s)x
Lemmas referenced : 
cubical-universe-I-cube, 
top_wf, 
I-cube_wf, 
cubical-universe_wf, 
list_wf, 
coordinate_name_wf
Rules used in proof : 
sqequalHypSubstitution, 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
sqequalRule, 
because_Cache, 
instantiate, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isect_memberEquality
Latex:
\mforall{}[I:Cname  List].  \mforall{}[alpha:c\mBbbU{}(I)].  \mforall{}[J,L,f,g:Top].
    (cu-cube-family(alpha;L;(f  o  g))  \msim{}  cu-cube-family(f(alpha);L;g))
Date html generated:
2016_06_16-PM-08_07_19
Last ObjectModification:
2015_12_28-PM-04_11_37
Theory : cubical!sets
Home
Index