Nuprl Lemma : pairwise-implies
∀[T:Type]
  ∀L:T List
    ∀[P:T ⟶ T ⟶ ℙ']. ((∀x,y∈L.  P[x;y]) ⇒ (∀x,y:T.  ((x ∈ L) ⇒ (y ∈ L) ⇒ ((x = y ∈ T) ∨ P[x;y] ∨ P[y;x]))))
Proof
Definitions occuring in Statement : 
pairwise: (∀x,y∈L.  P[x; y]), 
l_member: (x ∈ l), 
list: T List, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
l_member: (x ∈ l), 
pairwise: (∀x,y∈L.  P[x; y]), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
member: t ∈ T, 
prop: ℙ, 
so_apply: x[s1;s2], 
so_lambda: λ2x.t[x], 
nat: ℕ, 
uimplies: b supposing a, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
le: A ≤ B
Lemmas referenced : 
or_wf, 
equal_wf, 
exists_wf, 
nat_wf, 
less_than_wf, 
length_wf, 
select_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
all_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
list_wf, 
lelt_wf, 
squash_wf, 
le_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
hypothesis, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
equalityTransitivity, 
applyEquality, 
functionExtensionality, 
because_Cache, 
lambdaEquality, 
productEquality, 
setElimination, 
rename, 
independent_isectElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
universeEquality, 
imageElimination, 
functionEquality, 
inrFormation, 
inlFormation, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}']
            ((\mforall{}x,y\mmember{}L.    P[x;y])  {}\mRightarrow{}  (\mforall{}x,y:T.    ((x  \mmember{}  L)  {}\mRightarrow{}  (y  \mmember{}  L)  {}\mRightarrow{}  ((x  =  y)  \mvee{}  P[x;y]  \mvee{}  P[y;x]))))
Date html generated:
2017_04_17-AM-07_44_13
Last ObjectModification:
2017_02_27-PM-04_16_29
Theory : list_1
Home
Index