Nuprl Lemma : pairwise-implies

[T:Type]
  ∀L:T List
    ∀[P:T ⟶ T ⟶ ℙ']. ((∀x,y∈L.  P[x;y])  (∀x,y:T.  ((x ∈ L)  (y ∈ L)  ((x y ∈ T) ∨ P[x;y] ∨ P[y;x]))))


Proof




Definitions occuring in Statement :  pairwise: (∀x,y∈L.  P[x; y]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  l_member: (x ∈ l) pairwise: (∀x,y∈L.  P[x; y]) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] cand: c∧ B member: t ∈ T prop: so_apply: x[s1;s2] so_lambda: λ2x.t[x] nat: uimplies: supposing a ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top and: P ∧ Q so_apply: x[s] subtype_rel: A ⊆B int_seg: {i..j-} guard: {T} lelt: i ≤ j < k less_than: a < b squash: T le: A ≤ B
Lemmas referenced :  or_wf equal_wf exists_wf nat_wf less_than_wf length_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf all_wf int_seg_wf int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma list_wf lelt_wf squash_wf le_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut hypothesis hyp_replacement equalitySymmetry applyLambdaEquality instantiate introduction extract_by_obid isectElimination cumulativity hypothesisEquality equalityTransitivity applyEquality functionExtensionality because_Cache lambdaEquality productEquality setElimination rename independent_isectElimination dependent_functionElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll universeEquality imageElimination functionEquality inrFormation inlFormation dependent_set_memberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}']
            ((\mforall{}x,y\mmember{}L.    P[x;y])  {}\mRightarrow{}  (\mforall{}x,y:T.    ((x  \mmember{}  L)  {}\mRightarrow{}  (y  \mmember{}  L)  {}\mRightarrow{}  ((x  =  y)  \mvee{}  P[x;y]  \mvee{}  P[y;x]))))



Date html generated: 2017_04_17-AM-07_44_13
Last ObjectModification: 2017_02_27-PM-04_16_29

Theory : list_1


Home Index