Step
*
of Lemma
pairwise-implies
∀[T:Type]
∀L:T List
∀[P:T ⟶ T ⟶ ℙ']. ((∀x,y∈L. P[x;y])
⇒ (∀x,y:T. ((x ∈ L)
⇒ (y ∈ L)
⇒ ((x = y ∈ T) ∨ P[x;y] ∨ P[y;x]))))
BY
{ (Unfolds ``pairwise l_member`` 0
THEN Auto
THEN ExRepD
THEN (HypSubst (-4) 0 THEN Auto)
THEN HypSubst (-1) 0
THEN Auto) }
1
1. [T] : Type
2. L : T List
3. [P] : T ⟶ T ⟶ ℙ'
4. ∀i:ℕ||L||. ∀j:ℕi. P[L[j];L[i]]
5. x : T
6. y : T
7. i1 : ℕ
8. i1 < ||L||
9. x = L[i1] ∈ T
10. i : ℕ
11. i < ||L||
12. y = L[i] ∈ T
⊢ (L[i1] = L[i] ∈ T) ∨ P[L[i1];L[i]] ∨ P[L[i];L[i1]]
Latex:
Latex:
\mforall{}[T:Type]
\mforall{}L:T List
\mforall{}[P:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}']
((\mforall{}x,y\mmember{}L. P[x;y]) {}\mRightarrow{} (\mforall{}x,y:T. ((x \mmember{} L) {}\mRightarrow{} (y \mmember{} L) {}\mRightarrow{} ((x = y) \mvee{} P[x;y] \mvee{} P[y;x]))))
By
Latex:
(Unfolds ``pairwise l\_member`` 0
THEN Auto
THEN ExRepD
THEN (HypSubst (-4) 0 THEN Auto)
THEN HypSubst (-1) 0
THEN Auto)
Home
Index