Nuprl Lemma : face-compatible-symmetry
∀[X:CubicalSet]. ∀[I:Cname List]. ∀[f1,f2:I-face(X;I)].  (face-compatible(X;I;f1;f2) 
⇒ face-compatible(X;I;f2;f1))
Proof
Definitions occuring in Statement : 
face-compatible: face-compatible(X;I;f1;f2)
, 
I-face: I-face(X;I)
, 
cubical-set: CubicalSet
, 
coordinate_name: Cname
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
I-face: I-face(X;I)
, 
face-compatible: face-compatible(X;I;f1;f2)
, 
spreadn: spread3, 
not: ¬A
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
squash: ↓T
, 
guard: {T}
, 
false: False
, 
int_seg: {i..j-}
, 
nameset: nameset(L)
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
Lemmas referenced : 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
le_wf, 
int_formula_prop_wf, 
equal_wf, 
coordinate_name_wf, 
not_wf, 
face-compatible_wf, 
I-face_wf, 
list_wf, 
cubical-set_wf, 
subtype_base_sq, 
list_subtype_base, 
set_subtype_base, 
int_subtype_base, 
squash_wf, 
true_wf, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
list-diff2-sym, 
iff_weakening_equal, 
list-diff2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
introduction, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
axiomEquality, 
independent_functionElimination, 
cut, 
applyLambdaEquality, 
setElimination, 
rename, 
hypothesis, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
imageElimination, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
equalitySymmetry, 
computeAll, 
instantiate, 
cumulativity, 
applyEquality, 
equalityTransitivity, 
because_Cache, 
universeEquality
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[I:Cname  List].  \mforall{}[f1,f2:I-face(X;I)].
    (face-compatible(X;I;f1;f2)  {}\mRightarrow{}  face-compatible(X;I;f2;f1))
Date html generated:
2017_10_05-AM-10_17_42
Last ObjectModification:
2017_07_28-AM-11_20_26
Theory : cubical!sets
Home
Index