Step * of Lemma cu-cube-restriction-comp

[I:Cname List]. ∀[alpha:c𝕌(I)]. ∀[L,J,K:Cname List]. ∀[f:name-morph(L;J)]. ∀[g:name-morph(J;K)]. ∀[a:name-morph(I;L)].
[T:cu-cube-family(alpha;L;a)].
  (cu-cube-restriction(alpha;J;K;g;(a f);cu-cube-restriction(alpha;L;J;f;a;T))
  cu-cube-restriction(alpha;L;K;(f g);a;T)
  ∈ cu-cube-family(alpha;K;(a (f g))))
BY
((UnivCD THENA Auto)
   THEN (RWO "cubical-universe-I-cube" THENA Auto)
   THEN RepeatFor (D 2)
   THEN All Reduce
   THEN All (RepUR ``cu-cube-family cu-cube-restriction``)
   THEN Auto) }


Latex:


Latex:
\mforall{}[I:Cname  List].  \mforall{}[alpha:c\mBbbU{}(I)].  \mforall{}[L,J,K:Cname  List].  \mforall{}[f:name-morph(L;J)].  \mforall{}[g:name-morph(J;K)].
\mforall{}[a:name-morph(I;L)].  \mforall{}[T:cu-cube-family(alpha;L;a)].
    (cu-cube-restriction(alpha;J;K;g;(a  o  f);cu-cube-restriction(alpha;L;J;f;a;T))
    =  cu-cube-restriction(alpha;L;K;(f  o  g);a;T))


By


Latex:
((UnivCD  THENA  Auto)
  THEN  (RWO  "cubical-universe-I-cube"  2  THENA  Auto)
  THEN  RepeatFor  4  (D  2)
  THEN  All  Reduce
  THEN  All  (RepUR  ``cu-cube-family  cu-cube-restriction``)
  THEN  Auto)




Home Index