Nuprl Lemma : cu-cube-restriction-comp
∀[I:Cname List]. ∀[alpha:c𝕌(I)]. ∀[L,J,K:Cname List]. ∀[f:name-morph(L;J)]. ∀[g:name-morph(J;K)]. ∀[a:name-morph(I;L)].
∀[T:cu-cube-family(alpha;L;a)].
(cu-cube-restriction(alpha;J;K;g;(a o f);cu-cube-restriction(alpha;L;J;f;a;T))
= cu-cube-restriction(alpha;L;K;(f o g);a;T)
∈ cu-cube-family(alpha;K;(a o (f o g))))
Proof
Definitions occuring in Statement :
cu-cube-restriction: cu-cube-restriction(alpha;L;J;f;a;T)
,
cu-cube-family: cu-cube-family(alpha;L;f)
,
cubical-universe: c𝕌
,
I-cube: X(I)
,
name-comp: (f o g)
,
name-morph: name-morph(I;J)
,
coordinate_name: Cname
,
list: T List
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
pi1: fst(t)
,
cu-cube-family: cu-cube-family(alpha;L;f)
,
cu-cube-restriction: cu-cube-restriction(alpha;L;J;f;a;T)
,
pi2: snd(t)
,
and: P ∧ Q
,
squash: ↓T
,
prop: ℙ
,
all: ∀x:A. B[x]
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
cubical-universe-I-cube,
equal_wf,
squash_wf,
true_wf,
list_wf,
coordinate_name_wf,
name-comp_wf,
iff_weakening_equal,
cu-cube-family_wf,
name-morph_wf,
I-cube_wf,
cubical-universe_wf
Rules used in proof :
sqequalHypSubstitution,
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
setElimination,
rename,
productElimination,
sqequalRule,
applyEquality,
lambdaEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
universeEquality,
functionExtensionality,
because_Cache,
dependent_functionElimination,
natural_numberEquality,
imageMemberEquality,
baseClosed,
independent_isectElimination,
independent_functionElimination,
instantiate,
isect_memberFormation,
isect_memberEquality,
axiomEquality
Latex:
\mforall{}[I:Cname List]. \mforall{}[alpha:c\mBbbU{}(I)]. \mforall{}[L,J,K:Cname List]. \mforall{}[f:name-morph(L;J)]. \mforall{}[g:name-morph(J;K)].
\mforall{}[a:name-morph(I;L)]. \mforall{}[T:cu-cube-family(alpha;L;a)].
(cu-cube-restriction(alpha;J;K;g;(a o f);cu-cube-restriction(alpha;L;J;f;a;T))
= cu-cube-restriction(alpha;L;K;(f o g);a;T))
Date html generated:
2017_10_05-PM-04_13_33
Last ObjectModification:
2017_07_28-AM-11_30_12
Theory : cubical!sets
Home
Index