Nuprl Lemma : cu-cube-restriction-comp
∀[I:Cname List]. ∀[alpha:c𝕌(I)]. ∀[L,J,K:Cname List]. ∀[f:name-morph(L;J)]. ∀[g:name-morph(J;K)]. ∀[a:name-morph(I;L)].
∀[T:cu-cube-family(alpha;L;a)].
  (cu-cube-restriction(alpha;J;K;g;(a o f);cu-cube-restriction(alpha;L;J;f;a;T))
  = cu-cube-restriction(alpha;L;K;(f o g);a;T)
  ∈ cu-cube-family(alpha;K;(a o (f o g))))
Proof
Definitions occuring in Statement : 
cu-cube-restriction: cu-cube-restriction(alpha;L;J;f;a;T), 
cu-cube-family: cu-cube-family(alpha;L;f), 
cubical-universe: c𝕌, 
I-cube: X(I), 
name-comp: (f o g), 
name-morph: name-morph(I;J), 
coordinate_name: Cname, 
list: T List, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
pi1: fst(t), 
cu-cube-family: cu-cube-family(alpha;L;f), 
cu-cube-restriction: cu-cube-restriction(alpha;L;J;f;a;T), 
pi2: snd(t), 
and: P ∧ Q, 
squash: ↓T, 
prop: ℙ, 
all: ∀x:A. B[x], 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
cubical-universe-I-cube, 
equal_wf, 
squash_wf, 
true_wf, 
list_wf, 
coordinate_name_wf, 
name-comp_wf, 
iff_weakening_equal, 
cu-cube-family_wf, 
name-morph_wf, 
I-cube_wf, 
cubical-universe_wf
Rules used in proof : 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
functionExtensionality, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
instantiate, 
isect_memberFormation, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[I:Cname  List].  \mforall{}[alpha:c\mBbbU{}(I)].  \mforall{}[L,J,K:Cname  List].  \mforall{}[f:name-morph(L;J)].  \mforall{}[g:name-morph(J;K)].
\mforall{}[a:name-morph(I;L)].  \mforall{}[T:cu-cube-family(alpha;L;a)].
    (cu-cube-restriction(alpha;J;K;g;(a  o  f);cu-cube-restriction(alpha;L;J;f;a;T))
    =  cu-cube-restriction(alpha;L;K;(f  o  g);a;T))
Date html generated:
2017_10_05-PM-04_13_33
Last ObjectModification:
2017_07_28-AM-11_30_12
Theory : cubical!sets
Home
Index