Nuprl Lemma : cu-cube-restriction-comp

[I:Cname List]. ∀[alpha:c𝕌(I)]. ∀[L,J,K:Cname List]. ∀[f:name-morph(L;J)]. ∀[g:name-morph(J;K)]. ∀[a:name-morph(I;L)].
[T:cu-cube-family(alpha;L;a)].
  (cu-cube-restriction(alpha;J;K;g;(a f);cu-cube-restriction(alpha;L;J;f;a;T))
  cu-cube-restriction(alpha;L;K;(f g);a;T)
  ∈ cu-cube-family(alpha;K;(a (f g))))


Proof




Definitions occuring in Statement :  cu-cube-restriction: cu-cube-restriction(alpha;L;J;f;a;T) cu-cube-family: cu-cube-family(alpha;L;f) cubical-universe: c𝕌 I-cube: X(I) name-comp: (f g) name-morph: name-morph(I;J) coordinate_name: Cname list: List uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pi1: fst(t) cu-cube-family: cu-cube-family(alpha;L;f) cu-cube-restriction: cu-cube-restriction(alpha;L;J;f;a;T) pi2: snd(t) and: P ∧ Q squash: T prop: all: x:A. B[x] true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical-universe-I-cube equal_wf squash_wf true_wf list_wf coordinate_name_wf name-comp_wf iff_weakening_equal cu-cube-family_wf name-morph_wf I-cube_wf cubical-universe_wf
Rules used in proof :  sqequalHypSubstitution cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality hypothesis setElimination rename productElimination sqequalRule applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality functionExtensionality because_Cache dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination instantiate isect_memberFormation isect_memberEquality axiomEquality

Latex:
\mforall{}[I:Cname  List].  \mforall{}[alpha:c\mBbbU{}(I)].  \mforall{}[L,J,K:Cname  List].  \mforall{}[f:name-morph(L;J)].  \mforall{}[g:name-morph(J;K)].
\mforall{}[a:name-morph(I;L)].  \mforall{}[T:cu-cube-family(alpha;L;a)].
    (cu-cube-restriction(alpha;J;K;g;(a  o  f);cu-cube-restriction(alpha;L;J;f;a;T))
    =  cu-cube-restriction(alpha;L;K;(f  o  g);a;T))



Date html generated: 2017_10_05-PM-04_13_33
Last ObjectModification: 2017_07_28-AM-11_30_12

Theory : cubical!sets


Home Index