Step
*
1
of Lemma
cube-context-adjoin_wf
1. Gamma : CubicalSet
2. A : {Gamma ⊢ _}
3. ∀I,J,K:Cname List. ∀f:name-morph(I;J). ∀g:name-morph(J;K).
((λp.<(f o g)(fst(p)), (snd(p) fst(p) (f o g))>)
= ((λp.<g(fst(p)), (snd(p) fst(p) g)>) o (λp.<f(fst(p)), (snd(p) fst(p) f)>))
∈ ((alpha:Gamma(I) × A(alpha)) ⟶ (alpha:Gamma(K) × A(alpha))))
4. I : Cname List
⊢ (λp.<1(fst(p)), (snd(p) fst(p) 1)>) = (λx.x) ∈ ((alpha:Gamma(I) × A(alpha)) ⟶ (alpha:Gamma(I) × A(alpha)))
BY
{ ((EqCD THENA Auto) THEN D -1 THEN Reduce 0 THEN EqCD THEN Auto) }
Latex:
Latex:
1. Gamma : CubicalSet
2. A : \{Gamma \mvdash{} \_\}
3. \mforall{}I,J,K:Cname List. \mforall{}f:name-morph(I;J). \mforall{}g:name-morph(J;K).
((\mlambda{}p.<(f o g)(fst(p)), (snd(p) fst(p) (f o g))>)
= ((\mlambda{}p.<g(fst(p)), (snd(p) fst(p) g)>) o (\mlambda{}p.<f(fst(p)), (snd(p) fst(p) f)>)))
4. I : Cname List
\mvdash{} (\mlambda{}p.ə(fst(p)), (snd(p) fst(p) 1)>) = (\mlambda{}x.x)
By
Latex:
((EqCD THENA Auto) THEN D -1 THEN Reduce 0 THEN EqCD THEN Auto)
Home
Index