Nuprl Lemma : cube-context-adjoin_wf

[Gamma:CubicalSet]. ∀[A:{Gamma ⊢ _}].  (Gamma.A ∈ CubicalSet)


Proof




Definitions occuring in Statement :  cube-context-adjoin: X.A cubical-type: {X ⊢ _} cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cube-context-adjoin: X.A cubical-set: CubicalSet pi1: fst(t) pi2: snd(t) and: P ∧ Q cand: c∧ B all: x:A. B[x] compose: g squash: T prop: top: Top so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cube-set-restriction_wf cubical-type-ap-morph_wf cubical-type-at_wf name-morph_wf equal_wf squash_wf true_wf I-cube_wf name-comp_wf cubical-type-ap-morph-comp pi1_wf_top pi2_wf subtype_rel-equal cube-set-restriction-comp iff_weakening_equal all_wf compose_wf equal-wf-T-base list_wf coordinate_name_wf id-morph_wf cubical-type_wf cubical-set_wf cube-set-restriction-id cubical-type-ap-morph-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependent_set_memberEquality dependent_pairEquality because_Cache lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination hypothesis functionEquality applyEquality functionExtensionality lambdaFormation imageElimination equalityTransitivity equalitySymmetry universeEquality productEquality independent_pairEquality isect_memberEquality voidElimination voidEquality independent_isectElimination instantiate dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination independent_pairFormation axiomEquality

Latex:
\mforall{}[Gamma:CubicalSet].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    (Gamma.A  \mmember{}  CubicalSet)



Date html generated: 2017_10_05-AM-10_13_17
Last ObjectModification: 2017_07_28-AM-11_18_49

Theory : cubical!sets


Home Index