Step * 2 1 of Lemma cubical-type-ap-rename-one-equal

.....fun wf..... 
1. CubicalSet
2. {X ⊢ _}
3. Cname List
4. Cname
5. Cname
6. X([x I])
7. A(a)
8. A(a)
9. ¬(y ∈ I)
10. ¬(x ∈ I)
11. (u rename-one-name(x;y)) (v rename-one-name(x;y)) ∈ A(rename-one-name(x;y)(a))
12. (rename-one-name(x;y) rename-one-name(y;x)) 1 ∈ name-morph([x I];[x I])
13. A(rename-one-name(x;y)(a))
⊢ (Z rename-one-name(x;y)(a) rename-one-name(y;x)) (Z rename-one-name(x;y)(a) rename-one-name(y;x)) ∈ A(a)
BY
((Fold `member` THEN InferEqualType THEN Auto)
   THEN (EqCD THEN Auto)
   THEN RWO  "cube-set-restriction-comp" 0
   THEN Auto) }


Latex:


Latex:
.....fun  wf..... 
1.  X  :  CubicalSet
2.  A  :  \{X  \mvdash{}  \_\}
3.  I  :  Cname  List
4.  x  :  Cname
5.  y  :  Cname
6.  a  :  X([x  /  I])
7.  u  :  A(a)
8.  v  :  A(a)
9.  \mneg{}(y  \mmember{}  I)
10.  \mneg{}(x  \mmember{}  I)
11.  (u  a  rename-one-name(x;y))  =  (v  a  rename-one-name(x;y))
12.  (rename-one-name(x;y)  o  rename-one-name(y;x))  =  1
13.  Z  :  A(rename-one-name(x;y)(a))
\mvdash{}  (Z  rename-one-name(x;y)(a)  rename-one-name(y;x))
=  (Z  rename-one-name(x;y)(a)  rename-one-name(y;x))


By


Latex:
((Fold  `member`  0  THEN  InferEqualType  THEN  Auto)
  THEN  (EqCD  THEN  Auto)
  THEN  RWO    "cube-set-restriction-comp"  0
  THEN  Auto)




Home Index