Nuprl Lemma : cubical-type-ap-rename-one-equal

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[I:Cname List]. ∀[x,y:Cname]. ∀[a:X([x I])]. ∀[u,v:A(a)].
  v ∈ A(a) ⇐⇒ (u rename-one-name(x;y)) (v rename-one-name(x;y)) ∈ A(rename-one-name(x;y)(a)) 
  supposing (y ∈ I)) ∧ (x ∈ I))


Proof




Definitions occuring in Statement :  cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-type: {X ⊢ _} cube-set-restriction: f(s) I-cube: X(I) cubical-set: CubicalSet rename-one-name: rename-one-name(z1;z2) coordinate_name: Cname l_member: (x ∈ l) cons: [a b] list: List uimplies: supposing a uall: [x:A]. B[x] iff: ⇐⇒ Q not: ¬A and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q iff: ⇐⇒ Q implies:  Q squash: T cand: c∧ B true: True prop: rev_implies:  Q all: x:A. B[x] subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  cubical-type-ap-morph_wf cons_wf coordinate_name_wf rename-one-name_wf equal_wf cubical-type-at_wf cube-set-restriction_wf not_wf l_member_wf I-cube_wf rename-one-comp name-morph_wf id-morph_wf rename-one-same squash_wf true_wf iff_weakening_equal cube-set-restriction-comp cube-set-restriction-when-id list_wf cubical-type_wf cubical-set_wf cubical-type-ap-morph-id cubical-type-ap-morph-comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin independent_pairFormation lambdaFormation applyEquality lambdaEquality imageElimination extract_by_obid isectElimination because_Cache hypothesis hypothesisEquality independent_isectElimination equalitySymmetry natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_pairEquality dependent_functionElimination axiomEquality productEquality isect_memberEquality equalityTransitivity universeEquality independent_functionElimination applyLambdaEquality hyp_replacement instantiate

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I:Cname  List].  \mforall{}[x,y:Cname].  \mforall{}[a:X([x  /  I])].  \mforall{}[u,v:A(a)].
    u  =  v  \mLeftarrow{}{}\mRightarrow{}  (u  a  rename-one-name(x;y))  =  (v  a  rename-one-name(x;y)) 
    supposing  (\mneg{}(y  \mmember{}  I))  \mwedge{}  (\mneg{}(x  \mmember{}  I))



Date html generated: 2017_10_05-AM-10_12_39
Last ObjectModification: 2017_07_28-AM-11_18_26

Theory : cubical!sets


Home Index