Step * 2 2 1 of Lemma cubical-type-ap-rename-one-equal

.....subterm..... T:t
2:n
1. CubicalSet
2. {X ⊢ _}
3. Cname List
4. Cname
5. Cname
6. X([x I])
7. A(a)
8. A(a)
9. ¬(y ∈ I)
10. ¬(x ∈ I)
11. (u rename-one-name(x;y)) (v rename-one-name(x;y)) ∈ A(rename-one-name(x;y)(a))
12. (rename-one-name(x;y) rename-one-name(y;x)) 1 ∈ name-morph([x I];[x I])
13. ((u rename-one-name(x;y)) rename-one-name(x;y)(a) rename-one-name(y;x))
((v rename-one-name(x;y)) rename-one-name(x;y)(a) rename-one-name(y;x))
∈ A(a)
⊢ ((u rename-one-name(x;y)) rename-one-name(x;y)(a) rename-one-name(y;x)) ∈ A(a)
BY
((InstLemma `cubical-type-ap-morph-comp` 
    [⌜X⌝;⌜A⌝;⌜[x I]⌝;⌜[y I]⌝;⌜[x I]⌝;⌜rename-one-name(x;y)⌝;⌜rename-one-name(y;x)⌝;⌜a⌝;⌜u⌝]⋅
    THENA Auto
    )
   THEN Symmetry
   THEN NthHypEq (-1)
   THEN EqCD
   THEN Auto) }


Latex:


Latex:
.....subterm.....  T:t
2:n
1.  X  :  CubicalSet
2.  A  :  \{X  \mvdash{}  \_\}
3.  I  :  Cname  List
4.  x  :  Cname
5.  y  :  Cname
6.  a  :  X([x  /  I])
7.  u  :  A(a)
8.  v  :  A(a)
9.  \mneg{}(y  \mmember{}  I)
10.  \mneg{}(x  \mmember{}  I)
11.  (u  a  rename-one-name(x;y))  =  (v  a  rename-one-name(x;y))
12.  (rename-one-name(x;y)  o  rename-one-name(y;x))  =  1
13.  ((u  a  rename-one-name(x;y))  rename-one-name(x;y)(a)  rename-one-name(y;x))
=  ((v  a  rename-one-name(x;y))  rename-one-name(x;y)(a)  rename-one-name(y;x))
\mvdash{}  u  =  ((u  a  rename-one-name(x;y))  rename-one-name(x;y)(a)  rename-one-name(y;x))


By


Latex:
((InstLemma  `cubical-type-ap-morph-comp` 
    [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}[x  /  I]\mkleeneclose{};\mkleeneopen{}[y  /  I]\mkleeneclose{};\mkleeneopen{}[x  /  I]\mkleeneclose{};\mkleeneopen{}rename-one-name(x;y)\mkleeneclose{};\mkleeneopen{}rename-one-name(y;x)\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}u\mkleeneclose{}]\mcdot{}
    THENA  Auto
    )
  THEN  Symmetry
  THEN  NthHypEq  (-1)
  THEN  EqCD
  THEN  Auto)




Home Index