Step
*
1
2
of Lemma
get_face_image
1. X : CubicalSet
2. I : Cname List
3. J : nameset(I) List
4. x : nameset(I)
5. i : ℕ2
6. bx : open_box(X;I;J;x;i)
7. K : Cname List
8. f : name-morph(I;K)
9. c : ℕ2
10. y : nameset(J)
11. nameset([x / J]) ⊆r name-morph-domain(f;I)
12. ¬(filter(λf.((dimension(f) =z y) ∧b (direction(f) =z c));bx)
= []
∈ ({f:{f:I-face(X;I)| (f ∈ bx)} | ↑((dimension(f) =z y) ∧b (direction(f) =z c))}  List))
13. (∀fc:I-face(X;I). ((fc ∈ bx) 
⇒ (↑isname(f (fst(fc))))))
∧ (map(f;J) ∈ nameset(K) List)
∧ (f x ∈ nameset(K))
∧ (f y ∈ nameset(map(f;J)))
⊢ hd(filter(λf@0.((dimension(f@0) =z f y) ∧b (direction(f@0) =z c));open_box_image(X;I;K;f;bx)))
= face-image(X;I;K;f;hd(filter(λf.((dimension(f) =z y) ∧b (direction(f) =z c));bx)))
∈ I-face(X;K)
BY
{ ((InstLemma `non-trivial-open-box` [⌜X⌝;⌜K⌝;⌜map(f;J)⌝;⌜f x⌝;⌜i⌝;⌜open_box_image(X;I;K;f;bx)⌝;⌜f y⌝;⌜c⌝]⋅ THENA Auto)
   THEN (RepUR ``open_box_image`` 0 THEN (RWO "filter-map" 0 THENA Auto) THEN RepUR ``compose`` 0)
   THEN RepUR ``open_box_image`` -1
   THEN (RWO "filter-map" (-1) THENA Auto)
   THEN RepUR ``compose`` -1) }
1
1. X : CubicalSet
2. I : Cname List
3. J : nameset(I) List
4. x : nameset(I)
5. i : ℕ2
6. bx : open_box(X;I;J;x;i)
7. K : Cname List
8. f : name-morph(I;K)
9. c : ℕ2
10. y : nameset(J)
11. nameset([x / J]) ⊆r name-morph-domain(f;I)
12. ¬(filter(λf.((dimension(f) =z y) ∧b (direction(f) =z c));bx)
= []
∈ ({f:{f:I-face(X;I)| (f ∈ bx)} | ↑((dimension(f) =z y) ∧b (direction(f) =z c))}  List))
13. (∀fc:I-face(X;I). ((fc ∈ bx) 
⇒ (↑isname(f (fst(fc))))))
∧ (map(f;J) ∈ nameset(K) List)
∧ (f x ∈ nameset(K))
∧ (f y ∈ nameset(map(f;J)))
14. ¬(map(λface.face-image(X;I;K;f;face);filter(λx.((dimension(face-image(X;I;K;f;x)) =z f y)
                                                   ∧b (direction(face-image(X;I;K;f;x)) =z c));bx))
= []
∈ ({f@0:{f@0:I-face(X;K)| (f@0 ∈ map(λface.face-image(X;I;K;f;face);bx))} | 
    ↑((dimension(f@0) =z f y) ∧b (direction(f@0) =z c))}  List))
⊢ hd(map(λface.face-image(X;I;K;f;face);filter(λx.((dimension(face-image(X;I;K;f;x)) =z f y)
                                                  ∧b (direction(face-image(X;I;K;f;x)) =z c));bx)))
= face-image(X;I;K;f;hd(filter(λf.((dimension(f) =z y) ∧b (direction(f) =z c));bx)))
∈ I-face(X;K)
Latex:
Latex:
1.  X  :  CubicalSet
2.  I  :  Cname  List
3.  J  :  nameset(I)  List
4.  x  :  nameset(I)
5.  i  :  \mBbbN{}2
6.  bx  :  open\_box(X;I;J;x;i)
7.  K  :  Cname  List
8.  f  :  name-morph(I;K)
9.  c  :  \mBbbN{}2
10.  y  :  nameset(J)
11.  nameset([x  /  J])  \msubseteq{}r  name-morph-domain(f;I)
12.  \mneg{}(filter(\mlambda{}f.((dimension(f)  =\msubz{}  y)  \mwedge{}\msubb{}  (direction(f)  =\msubz{}  c));bx)  =  [])
13.  (\mforall{}fc:I-face(X;I).  ((fc  \mmember{}  bx)  {}\mRightarrow{}  (\muparrow{}isname(f  (fst(fc))))))
\mwedge{}  (map(f;J)  \mmember{}  nameset(K)  List)
\mwedge{}  (f  x  \mmember{}  nameset(K))
\mwedge{}  (f  y  \mmember{}  nameset(map(f;J)))
\mvdash{}  hd(filter(\mlambda{}f@0.((dimension(f@0)  =\msubz{}  f  y)  \mwedge{}\msubb{}  (direction(f@0)  =\msubz{}  c));open\_box\_image(X;I;K;f;bx)))
=  face-image(X;I;K;f;hd(filter(\mlambda{}f.((dimension(f)  =\msubz{}  y)  \mwedge{}\msubb{}  (direction(f)  =\msubz{}  c));bx)))
By
Latex:
((InstLemma  `non-trivial-open-box`  [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}K\mkleeneclose{};\mkleeneopen{}map(f;J)\mkleeneclose{};\mkleeneopen{}f  x\mkleeneclose{};\mkleeneopen{}i\mkleeneclose{};\mkleeneopen{}open\_box\_image(X;I;K;f;bx)\mkleeneclose{};\mkleeneopen{}f  y\mkleeneclose{};
    \mkleeneopen{}c\mkleeneclose{}]\mcdot{}
    THENA  Auto
    )
  THEN  (RepUR  ``open\_box\_image``  0  THEN  (RWO  "filter-map"  0  THENA  Auto)  THEN  RepUR  ``compose``  0)
  THEN  RepUR  ``open\_box\_image``  -1
  THEN  (RWO  "filter-map"  (-1)  THENA  Auto)
  THEN  RepUR  ``compose``  -1)
Home
Index