Nuprl Lemma : get_face_image

[X:CubicalSet]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[bx:open_box(X;I;J;x;i)].
[K:Cname List]. ∀[f:name-morph(I;K)]. ∀[c:ℕ2]. ∀[y:nameset(J)].
  get_face(f y;c;open_box_image(X;I;K;f;bx)) face-image(X;I;K;f;get_face(y;c;bx)) ∈ I-face(X;K) 
  supposing nameset([x J]) ⊆name-morph-domain(f;I)


Proof




Definitions occuring in Statement :  open_box_image: open_box_image(X;I;K;f;bx) get_face: get_face(y;c;box) open_box: open_box(X;I;J;x;i) face-image: face-image(X;I;K;f;face) I-face: I-face(X;I) cubical-set: CubicalSet name-morph-domain: name-morph-domain(f;I) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname cons: [a b] list: List int_seg: {i..j-} uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a get_face: get_face(y;c;box) all: x:A. B[x] face-direction: direction(f) face-dimension: dimension(f) nameset: nameset(L) subtype_rel: A ⊆B implies:  Q name-morph-domain: name-morph-domain(f;I) prop: name-morph: name-morph(I;J) iff: ⇐⇒ Q and: P ∧ Q guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) isname: isname(z) le_int: i ≤j bnot: ¬bb ifthenelse: if then else fi  lt_int: i <j squash: T open_box: open_box(X;I;J;x;i) uiff: uiff(P;Q) cand: c∧ B I-face: I-face(X;I) top: Top l_member: (x ∈ l) exists: x:A. B[x] l_all: (∀x∈L.P[x]) nat: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B pi1: fst(t) sq_type: SQType(T) rev_implies:  Q or: P ∨ Q coordinate_name: Cname int_upper: {i...} open_box_image: open_box_image(X;I;K;f;bx) compose: g spreadn: spread3 pi2: snd(t) face-image: face-image(X;I;K;f;face) false: False assert: b bfalse: ff band: p ∧b q btrue: tt it: unit: Unit bool: 𝔹 true: True satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A nequal: a ≠ b ∈  label: ...$L... t listp: List+ cons: [a b] decidable: Dec(P) subtract: m less_than': less_than'(a;b) respects-equality: respects-equality(S;T) ge: i ≥ 
Lemmas referenced :  non-trivial-open-box subtype_rel_wf nameset_wf cons_wf coordinate_name_wf subtype_rel_list name-morph-domain_wf name-morph_wf open_box_wf int_seg_wf list_wf cubical-set_wf equal_wf sq_stable__assert member_filter_2 isname_wf l_member_wf subtype_rel_sets filter_wf5 list-subtype assert-isname nameset_subtype l_subset_right_cons_trivial I-face_wf pi1_wf_top lelt_wf length_wf assert_wf and_wf subtype_rel_product I-cube_wf list-diff_wf cname_deq_wf nil_wf top_wf subtype_base_sq nameset_subtype_base map_wf cons_member list_subtype_base sq_stable__l_member decidable__equal-coordinate_name set_subtype_base le_wf int_subtype_base select_member member-map open_box_image_wf filter-map istype-void istype-universe bool_wf true_wf squash_wf filter_wf2 neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert extd-nameset_subtype_int assert_of_eq_int eqtt_to_assert eq_int_wf iff_weakening_equal subtype_rel_self int_formula_prop_wf int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma istype-int itermVar_wf intformeq_wf intformnot_wf full-omega-unsat int_seg_properties nequal_wf bfalse_wf hd_map istype-less_than face-image_wf equal-wf-T-base face-dimension_wf face-direction_wf sqequal-nil length_wf_nat nat_wf set_wf list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf not_wf filter_type bool_cases band_wf btrue_wf respects-equality-list respects-equality-set-trivial2 hd_wf ge_wf listp_properties istype-false
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule hypothesis universeIsType setElimination rename applyEquality independent_isectElimination lambdaEquality_alt inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies because_Cache natural_numberEquality lambdaFormation lambdaEquality equalityTransitivity equalitySymmetry independent_functionElimination setEquality productElimination imageMemberEquality baseClosed imageElimination functionExtensionality independent_pairFormation independent_pairEquality isect_memberEquality voidElimination voidEquality dependent_set_memberEquality hyp_replacement applyLambdaEquality productEquality instantiate cumulativity inlFormation dependent_pairFormation intEquality universeEquality setIsType functionIsType promote_hyp equalityIsType1 dependent_pairFormation_alt equalityElimination unionElimination lambdaFormation_alt int_eqEquality approximateComputation dependent_pairEquality dependent_set_memberEquality_alt hypothesis_subsumption addEquality minusEquality equalityIstype

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[bx:open\_box(X;I;J;x;i)].  \mforall{}[K:Cname  List].  \mforall{}[f:name-morph(I;K)].  \mforall{}[c:\mBbbN{}2].  \mforall{}[y:nameset(J)].
    get\_face(f  y;c;open\_box\_image(X;I;K;f;bx))  =  face-image(X;I;K;f;get\_face(y;c;bx)) 
    supposing  nameset([x  /  J])  \msubseteq{}r  name-morph-domain(f;I)



Date html generated: 2019_11_05-PM-00_29_19
Last ObjectModification: 2018_12_10-AM-10_00_04

Theory : cubical!sets


Home Index