Nuprl Lemma : get_face_image
∀[X:CubicalSet]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[bx:open_box(X;I;J;x;i)].
∀[K:Cname List]. ∀[f:name-morph(I;K)]. ∀[c:ℕ2]. ∀[y:nameset(J)].
  get_face(f y;c;open_box_image(X;I;K;f;bx)) = face-image(X;I;K;f;get_face(y;c;bx)) ∈ I-face(X;K) 
  supposing nameset([x / J]) ⊆r name-morph-domain(f;I)
Proof
Definitions occuring in Statement : 
open_box_image: open_box_image(X;I;K;f;bx)
, 
get_face: get_face(y;c;box)
, 
open_box: open_box(X;I;J;x;i)
, 
face-image: face-image(X;I;K;f;face)
, 
I-face: I-face(X;I)
, 
cubical-set: CubicalSet
, 
name-morph-domain: name-morph-domain(f;I)
, 
name-morph: name-morph(I;J)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
cons: [a / b]
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
get_face: get_face(y;c;box)
, 
all: ∀x:A. B[x]
, 
face-direction: direction(f)
, 
face-dimension: dimension(f)
, 
nameset: nameset(L)
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
name-morph-domain: name-morph-domain(f;I)
, 
prop: ℙ
, 
name-morph: name-morph(I;J)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
isname: isname(z)
, 
le_int: i ≤z j
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
squash: ↓T
, 
open_box: open_box(X;I;J;x;i)
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
I-face: I-face(X;I)
, 
top: Top
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
l_all: (∀x∈L.P[x])
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
pi1: fst(t)
, 
sq_type: SQType(T)
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
open_box_image: open_box_image(X;I;K;f;bx)
, 
compose: f o g
, 
spreadn: spread3, 
pi2: snd(t)
, 
face-image: face-image(X;I;K;f;face)
, 
false: False
, 
assert: ↑b
, 
bfalse: ff
, 
band: p ∧b q
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
true: True
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
nequal: a ≠ b ∈ T 
, 
label: ...$L... t
, 
listp: A List+
, 
cons: [a / b]
, 
decidable: Dec(P)
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
respects-equality: respects-equality(S;T)
, 
ge: i ≥ j 
Lemmas referenced : 
non-trivial-open-box, 
subtype_rel_wf, 
nameset_wf, 
cons_wf, 
coordinate_name_wf, 
subtype_rel_list, 
name-morph-domain_wf, 
name-morph_wf, 
open_box_wf, 
int_seg_wf, 
list_wf, 
cubical-set_wf, 
equal_wf, 
sq_stable__assert, 
member_filter_2, 
isname_wf, 
l_member_wf, 
subtype_rel_sets, 
filter_wf5, 
list-subtype, 
assert-isname, 
nameset_subtype, 
l_subset_right_cons_trivial, 
I-face_wf, 
pi1_wf_top, 
lelt_wf, 
length_wf, 
assert_wf, 
and_wf, 
subtype_rel_product, 
I-cube_wf, 
list-diff_wf, 
cname_deq_wf, 
nil_wf, 
top_wf, 
subtype_base_sq, 
nameset_subtype_base, 
map_wf, 
cons_member, 
list_subtype_base, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
select_member, 
member-map, 
open_box_image_wf, 
filter-map, 
istype-void, 
istype-universe, 
bool_wf, 
true_wf, 
squash_wf, 
filter_wf2, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
extd-nameset_subtype_int, 
assert_of_eq_int, 
eqtt_to_assert, 
eq_int_wf, 
iff_weakening_equal, 
subtype_rel_self, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
istype-int, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
full-omega-unsat, 
int_seg_properties, 
nequal_wf, 
bfalse_wf, 
hd_map, 
istype-less_than, 
face-image_wf, 
equal-wf-T-base, 
face-dimension_wf, 
face-direction_wf, 
sqequal-nil, 
length_wf_nat, 
nat_wf, 
set_wf, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
not_wf, 
filter_type, 
bool_cases, 
band_wf, 
btrue_wf, 
respects-equality-list, 
respects-equality-set-trivial2, 
hd_wf, 
ge_wf, 
listp_properties, 
istype-false
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
hypothesis, 
universeIsType, 
setElimination, 
rename, 
applyEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
inhabitedIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
because_Cache, 
natural_numberEquality, 
lambdaFormation, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
setEquality, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionExtensionality, 
independent_pairFormation, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality, 
productEquality, 
instantiate, 
cumulativity, 
inlFormation, 
dependent_pairFormation, 
intEquality, 
universeEquality, 
setIsType, 
functionIsType, 
promote_hyp, 
equalityIsType1, 
dependent_pairFormation_alt, 
equalityElimination, 
unionElimination, 
lambdaFormation_alt, 
int_eqEquality, 
approximateComputation, 
dependent_pairEquality, 
dependent_set_memberEquality_alt, 
hypothesis_subsumption, 
addEquality, 
minusEquality, 
equalityIstype
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[bx:open\_box(X;I;J;x;i)].  \mforall{}[K:Cname  List].  \mforall{}[f:name-morph(I;K)].  \mforall{}[c:\mBbbN{}2].  \mforall{}[y:nameset(J)].
    get\_face(f  y;c;open\_box\_image(X;I;K;f;bx))  =  face-image(X;I;K;f;get\_face(y;c;bx)) 
    supposing  nameset([x  /  J])  \msubseteq{}r  name-morph-domain(f;I)
Date html generated:
2019_11_05-PM-00_29_19
Last ObjectModification:
2018_12_10-AM-10_00_04
Theory : cubical!sets
Home
Index