Nuprl Lemma : respects-equality-list
∀[A,B:Type].  respects-equality(A List;B List) supposing respects-equality(A;B)
Proof
Definitions occuring in Statement : 
list: T List
, 
uimplies: b supposing a
, 
respects-equality: respects-equality(S;T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
prop: ℙ
, 
respects-equality: respects-equality(S;T)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
cons: [a / b]
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
subtract: n - m
, 
le: A ≤ B
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
true: True
, 
sq_type: SQType(T)
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
sq_stable__respects-equality, 
list_wf, 
respects-equality_wf, 
istype-universe, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
istype-less_than, 
subtract-1-ge-0, 
istype-nat, 
length_wf_nat, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
istype-base, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
istype-void, 
le_weakening2, 
length_wf, 
istype-sqequal, 
sq_stable__le, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
istype-int, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
subtract_wf, 
minus-zero, 
subtype_base_sq, 
add-swap, 
nil_wf, 
tl_wf, 
equal_wf, 
squash_wf, 
true_wf, 
length_tl, 
decidable__le, 
istype-false, 
not-ge-2, 
less-iff-le, 
le-add-cancel2, 
subtype_rel_self, 
iff_weakening_equal, 
hd_wf, 
le_weakening, 
reduce_tl_nil_lemma, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
cons_wf, 
equal_functionality_wrt_subtype_rel2, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
Error :universeIsType, 
Error :inhabitedIsType, 
instantiate, 
universeEquality, 
Error :lambdaFormation_alt, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
voidElimination, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :equalityIstype, 
Error :setIsType, 
applyEquality, 
intEquality, 
closedConclusion, 
because_Cache, 
sqequalBase, 
equalitySymmetry, 
equalityTransitivity, 
Error :equalityIsType1, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
Error :isect_memberEquality_alt, 
Error :dependent_pairFormation_alt, 
applyLambdaEquality, 
addEquality, 
minusEquality, 
cumulativity, 
Error :dependent_set_memberEquality_alt, 
baseApply, 
independent_pairFormation, 
setEquality
Latex:
\mforall{}[A,B:Type].    respects-equality(A  List;B  List)  supposing  respects-equality(A;B)
Date html generated:
2019_06_20-PM-00_40_13
Last ObjectModification:
2018_11_23-PM-02_17_25
Theory : list_0
Home
Index