Nuprl Lemma : respects-equality-list

[A,B:Type].  respects-equality(A List;B List) supposing respects-equality(A;B)


Proof




Definitions occuring in Statement :  list: List uimplies: supposing a respects-equality: respects-equality(S;T) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T sq_stable: SqStable(P) implies:  Q squash: T all: x:A. B[x] nat: false: False ge: i ≥  guard: {T} prop: respects-equality: respects-equality(S;T) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q cons: [a b] top: Top exists: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q subtract: m le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True sq_type: SQType(T) decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  sq_stable__respects-equality list_wf respects-equality_wf istype-universe nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than subtract-1-ge-0 istype-nat length_wf_nat set_subtype_base le_wf int_subtype_base istype-base list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma istype-void le_weakening2 length_wf istype-sqequal sq_stable__le le_antisymmetry_iff condition-implies-le minus-add istype-int minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel subtract_wf minus-zero subtype_base_sq add-swap nil_wf tl_wf equal_wf squash_wf true_wf length_tl decidable__le istype-false not-ge-2 less-iff-le le-add-cancel2 subtype_rel_self iff_weakening_equal hd_wf le_weakening reduce_tl_nil_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma cons_wf equal_functionality_wrt_subtype_rel2 equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination Error :universeIsType,  Error :inhabitedIsType,  instantiate universeEquality Error :lambdaFormation_alt,  setElimination rename intWeakElimination natural_numberEquality independent_isectElimination voidElimination Error :lambdaEquality_alt,  dependent_functionElimination axiomEquality Error :functionIsTypeImplies,  Error :equalityIstype,  Error :setIsType,  applyEquality intEquality closedConclusion because_Cache sqequalBase equalitySymmetry equalityTransitivity Error :equalityIsType1,  unionElimination promote_hyp hypothesis_subsumption productElimination Error :isect_memberEquality_alt,  Error :dependent_pairFormation_alt,  applyLambdaEquality addEquality minusEquality cumulativity Error :dependent_set_memberEquality_alt,  baseApply independent_pairFormation setEquality

Latex:
\mforall{}[A,B:Type].    respects-equality(A  List;B  List)  supposing  respects-equality(A;B)



Date html generated: 2019_06_20-PM-00_40_13
Last ObjectModification: 2018_11_23-PM-02_17_25

Theory : list_0


Home Index