Nuprl Lemma : length_tl
∀[A:Type]. ∀[l:A List].  ||tl(l)|| = (||l|| - 1) ∈ ℤ supposing ||l|| ≥ 1 
Proof
Definitions occuring in Statement : 
length: ||as||
, 
tl: tl(l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
subtract: n - m
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
true: True
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
cons: [a / b]
, 
top: Top
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
ge_wf, 
length_wf, 
list_wf, 
list-cases, 
length_of_nil_lemma, 
reduce_tl_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
reduce_tl_cons_lemma, 
add-associates, 
add-swap, 
add-commutes, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
because_Cache, 
universeEquality, 
dependent_functionElimination, 
unionElimination, 
productElimination, 
independent_functionElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
voidEquality, 
applyEquality, 
lambdaEquality, 
intEquality, 
minusEquality, 
addEquality
Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].    ||tl(l)||  =  (||l||  -  1)  supposing  ||l||  \mgeq{}  1 
Date html generated:
2019_06_20-PM-00_40_04
Last ObjectModification:
2018_09_26-PM-02_12_31
Theory : list_0
Home
Index