Nuprl Lemma : hd_map
∀[T,T':Type]. ∀[a:T List+]. ∀[f:T ⟶ T'].  (hd(map(f;a)) = (f hd(a)) ∈ T')
Proof
Definitions occuring in Statement : 
listp: A List+
, 
map: map(f;as)
, 
hd: hd(l)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
less_than': less_than'(a;b)
, 
so_apply: x[s]
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
listp: A List+
Lemmas referenced : 
listp_wf, 
reduce_hd_cons_lemma, 
map_cons_lemma, 
length_of_cons_lemma, 
map_nil_lemma, 
length_of_nil_lemma, 
list_wf, 
less_than_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
map-length, 
map_wf, 
hd_wf, 
equal_wf, 
length_wf, 
ge_wf, 
list_induction, 
listp_properties
Rules used in proof : 
functionIsType, 
universeIsType, 
hypothesisEquality, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
functionEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
because_Cache, 
inhabitedIsType, 
universeEquality, 
isect_memberFormation_alt, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
addEquality, 
lambdaFormation, 
independent_functionElimination, 
dependent_set_memberEquality, 
computeAll, 
independent_pairFormation, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
productElimination, 
unionElimination, 
dependent_functionElimination, 
voidEquality, 
voidElimination, 
independent_isectElimination, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
cumulativity, 
lambdaEquality, 
rename, 
setElimination
Latex:
\mforall{}[T,T':Type].  \mforall{}[a:T  List\msupplus{}].  \mforall{}[f:T  {}\mrightarrow{}  T'].    (hd(map(f;a))  =  (f  hd(a)))
Date html generated:
2019_10_15-AM-10_53_25
Last ObjectModification:
2018_09_27-AM-10_02_47
Theory : list!
Home
Index