Nuprl Lemma : filter_wf2

[T:Type]. ∀[l:T List]. ∀[P:{x:T| (x ∈ l)}  ⟶ 𝔹].  (filter(P;l) ∈ {x:T| (x ∈ l)}  List)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) filter: filter(P;l) list: List bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] uimplies: supposing a
Lemmas referenced :  l_member_wf bool_wf list_wf filter_wf5 list-subtype subtype_rel_dep_function set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionEquality setEquality hypothesisEquality lemma_by_obid isectElimination thin isect_memberEquality because_Cache universeEquality applyEquality lambdaEquality lambdaFormation setElimination rename independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  l)\}    {}\mrightarrow{}  \mBbbB{}].    (filter(P;l)  \mmember{}  \{x:T|  (x  \mmember{}  l)\}    List)



Date html generated: 2016_05_14-AM-06_39_48
Last ObjectModification: 2015_12_26-PM-00_31_52

Theory : list_0


Home Index