Nuprl Lemma : non-trivial-open-box

[X:CubicalSet]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
  ∀bx:open_box(X;I;J;x;i). ∀y:nameset(J). ∀c:ℕ2.
    (filter(λf.((dimension(f) =z y) ∧b (direction(f) =z c));bx)
    []
    ∈ ({f:{f:I-face(X;I)| (f ∈ bx)} | ↑((dimension(f) =z y) ∧b (direction(f) =z c))}  List)))


Proof




Definitions occuring in Statement :  open_box: open_box(X;I;J;x;i) face-direction: direction(f) face-dimension: dimension(f) I-face: I-face(X;I) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname l_member: (x ∈ l) filter: filter(P;l) nil: [] list: List band: p ∧b q int_seg: {i..j-} assert: b eq_int: (i =z j) uall: [x:A]. B[x] all: x:A. B[x] not: ¬A set: {x:A| B[x]}  lambda: λx.A[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T open_box: open_box(X;I;J;x;i) prop: subtype_rel: A ⊆B nameset: nameset(L) coordinate_name: Cname int_upper: {i...} int_seg: {i..j-} implies:  Q not: ¬A false: False and: P ∧ Q uimplies: supposing a so_apply: x[s] top: Top bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff l_exists: (∃x∈L. P[x]) exists: x:A. B[x] face-name: face-name(f) pi2: snd(t) pi1: fst(t) guard: {T} lelt: i ≤ j < k sq_stable: SqStable(P) squash: T decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) less_than: a < b iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B face-direction: direction(f) face-dimension: dimension(f) so_lambda: λ2x.t[x] sq_type: SQType(T)
Lemmas referenced :  filter_type I-face_wf l_member_wf band_wf eq_int_wf face-dimension_wf face-direction_wf list-subtype list_wf assert_wf non_null_filter int_seg_wf not_wf null_wf3 subtype_rel_list top_wf bool_wf eqtt_to_assert assert_of_eq_int equal_wf assert_of_null equal-wf-T-base nameset_wf open_box_wf coordinate_name_wf cubical-set_wf iff_transitivity select_wf int_seg_properties length_wf sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma iff_weakening_uiff assert_of_band subtype_base_sq set_subtype_base lelt_wf int_subtype_base nameset_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality hypothesis setElimination rename lambdaEquality applyEquality because_Cache sqequalRule equalityTransitivity equalitySymmetry productElimination natural_numberEquality independent_isectElimination hyp_replacement applyLambdaEquality isect_memberEquality voidElimination voidEquality independent_functionElimination unionElimination equalityElimination dependent_functionElimination addLevel impliesFunctionality independent_pairFormation baseClosed dependent_pairFormation imageMemberEquality imageElimination int_eqEquality intEquality computeAll productEquality promote_hyp instantiate cumulativity

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
    \mforall{}bx:open\_box(X;I;J;x;i).  \mforall{}y:nameset(J).  \mforall{}c:\mBbbN{}2.
        (\mneg{}(filter(\mlambda{}f.((dimension(f)  =\msubz{}  y)  \mwedge{}\msubb{}  (direction(f)  =\msubz{}  c));bx)  =  []))



Date html generated: 2017_10_05-AM-10_20_43
Last ObjectModification: 2017_07_28-AM-11_21_03

Theory : cubical!sets


Home Index