Step
*
of Lemma
iota-identity2
∀[I:Cname List]. ∀[x:Cname]. ∀[i:ℕ2]. ((x:=i) o iota(x)) = 1 ∈ name-morph(I;I) supposing ¬(x ∈ I)
BY
{ (Auto THEN Symmetry THEN (InstLemma `id-morph_wf` [⌜I⌝]⋅ THENA Auto)) }
1
1. I : Cname List
2. x : Cname
3. i : ℕ2
4. ¬(x ∈ I)
5. 1 ∈ name-morph(I;I)
⊢ 1 = ((x:=i) o iota(x)) ∈ name-morph(I;I)
Latex:
Latex:
\mforall{}[I:Cname List]. \mforall{}[x:Cname]. \mforall{}[i:\mBbbN{}2]. ((x:=i) o iota(x)) = 1 supposing \mneg{}(x \mmember{} I)
By
Latex:
(Auto THEN Symmetry THEN (InstLemma `id-morph\_wf` [\mkleeneopen{}I\mkleeneclose{}]\mcdot{} THENA Auto))
Home
Index