Nuprl Lemma : iota-identity2

[I:Cname List]. ∀[x:Cname]. ∀[i:ℕ2].  ((x:=i) iota(x)) 1 ∈ name-morph(I;I) supposing ¬(x ∈ I)


Proof




Definitions occuring in Statement :  name-comp: (f g) iota: iota(x) face-map: (x:=i) id-morph: 1 name-morph: name-morph(I;J) coordinate_name: Cname l_member: (x ∈ l) list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: name-morph: name-morph(I;J) squash: T so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] all: x:A. B[x] iota: iota(x) face-map: (x:=i) name-comp: (f g) id-morph: 1 uext: uext(g) compose: g nameset: nameset(L) coordinate_name: Cname int_upper: {i...} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A subtype_rel: A ⊆B isname: isname(z)
Lemmas referenced :  id-morph_wf not_wf l_member_wf coordinate_name_wf int_seg_wf list_wf all_wf nameset_wf assert_wf isname_wf equal_wf extd-nameset_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_subtype_base nameset_subtype_extd-nameset le_int_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut equalitySymmetry extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity natural_numberEquality applyLambdaEquality setElimination rename imageMemberEquality baseClosed imageElimination dependent_set_memberEquality lambdaEquality functionEquality applyEquality functionExtensionality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination intEquality

Latex:
\mforall{}[I:Cname  List].  \mforall{}[x:Cname].  \mforall{}[i:\mBbbN{}2].    ((x:=i)  o  iota(x))  =  1  supposing  \mneg{}(x  \mmember{}  I)



Date html generated: 2017_10_05-AM-10_08_13
Last ObjectModification: 2017_07_28-AM-11_16_47

Theory : cubical!sets


Home Index