Step
*
of Lemma
name-morph-flip-face-map1
No Annotations
∀I:Cname List. ∀y:nameset(I). ∀a:ℕ2. ∀f:name-morph(I-[y];[]). ∀v:nameset(I).
((¬(v = y ∈ Cname))
⇒ (flip(((y:=a) o f);v) = ((y:=a) o flip(f;v)) ∈ name-morph(I;[])))
BY
{ (RepeatFor 2 ((D 0 THENA Auto))
THEN (Assert ∀v:nameset(I). ((¬(v = y ∈ Cname))
⇒ (v ∈ nameset(I-[y]))) BY
(Auto THEN DVar `v' THEN MemTypeCD THEN Auto THEN RW ListC 0 THEN Auto))
THEN Auto
THEN BLemma `name-morph-ext`
THEN Auto) }
1
1. I : Cname List
2. y : nameset(I)
3. ∀v:nameset(I). ((¬(v = y ∈ Cname))
⇒ (v ∈ nameset(I-[y])))
4. a : ℕ2
5. f : name-morph(I-[y];[])
6. v : nameset(I)
7. ¬(v = y ∈ Cname)
8. x : nameset(I)
⊢ (flip(((y:=a) o f);v) x) = (((y:=a) o flip(f;v)) x) ∈ extd-nameset([])
Latex:
Latex:
No Annotations
\mforall{}I:Cname List. \mforall{}y:nameset(I). \mforall{}a:\mBbbN{}2. \mforall{}f:name-morph(I-[y];[]). \mforall{}v:nameset(I).
((\mneg{}(v = y)) {}\mRightarrow{} (flip(((y:=a) o f);v) = ((y:=a) o flip(f;v))))
By
Latex:
(RepeatFor 2 ((D 0 THENA Auto))
THEN (Assert \mforall{}v:nameset(I). ((\mneg{}(v = y)) {}\mRightarrow{} (v \mmember{} nameset(I-[y]))) BY
(Auto THEN DVar `v' THEN MemTypeCD THEN Auto THEN RW ListC 0 THEN Auto))
THEN Auto
THEN BLemma `name-morph-ext`
THEN Auto)
Home
Index