Nuprl Lemma : name-morph-flip-face-map1

I:Cname List. ∀y:nameset(I). ∀a:ℕ2. ∀f:name-morph(I-[y];[]). ∀v:nameset(I).
  ((¬(v y ∈ Cname))  (flip(((y:=a) f);v) ((y:=a) flip(f;v)) ∈ name-morph(I;[])))


Proof




Definitions occuring in Statement :  name-morph-flip: flip(f;y) name-comp: (f g) face-map: (x:=i) name-morph: name-morph(I;J) nameset: nameset(L) cname_deq: CnameDeq coordinate_name: Cname list-diff: as-bs cons: [a b] nil: [] list: List int_seg: {i..j-} all: x:A. B[x] not: ¬A implies:  Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T nameset: nameset(L) uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B not: ¬A prop: false: False guard: {T} uimplies: supposing a name-morph-flip: flip(f;y) face-map: (x:=i) name-comp: (f g) compose: g uext: uext(g) coordinate_name: Cname int_upper: {i...} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) isname: isname(z) le_int: i ≤j lt_int: i <j bnot: ¬bb satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff squash: T less_than: a < b top: Top assert: b subtype_rel: A ⊆B name-morph: name-morph(I;J) nequal: a ≠ b ∈ 
Lemmas referenced :  member-list-diff coordinate_name_wf cname_deq_wf cons_wf nil_wf member_singleton l_member_wf list-diff_wf istype-void name-morph-ext name-morph-flip_wf name-comp_wf face-map_wf2 name-morph_wf int_seg_wf nameset_wf list_wf eq_int_wf eqtt_to_assert assert_of_eq_int decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties int_seg_subtype_special int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf eq-cname_wf assert-eq-cname intformeq_wf intformnot_wf int_formula_prop_eq_lemma int_formula_prop_not_lemma istype-le eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal_wf nsub2_subtype_extd-nameset neg_assert_of_eq_int subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma decidable__lt istype-less_than isname-name
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt hypothesisEquality introduction extract_by_obid isectElimination hypothesis dependent_functionElimination because_Cache productElimination independent_functionElimination independent_pairFormation universeIsType sqequalRule functionIsType equalityIstype independent_isectElimination natural_numberEquality inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry instantiate cumulativity intEquality hypothesis_subsumption approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  voidElimination applyLambdaEquality imageMemberEquality baseClosed imageElimination isect_memberEquality_alt promote_hyp applyEquality productIsType

Latex:
\mforall{}I:Cname  List.  \mforall{}y:nameset(I).  \mforall{}a:\mBbbN{}2.  \mforall{}f:name-morph(I-[y];[]).  \mforall{}v:nameset(I).
    ((\mneg{}(v  =  y))  {}\mRightarrow{}  (flip(((y:=a)  o  f);v)  =  ((y:=a)  o  flip(f;v))))



Date html generated: 2020_05_21-AM-10_50_01
Last ObjectModification: 2019_12_10-PM-02_23_58

Theory : cubical!sets


Home Index