Nuprl Lemma : nerve_box_edge'_wf

[C:SmallCategory]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
[box:open_box(cubical-nerve(C);I;J;x;i)]. ∀[y:nameset(I)]. ∀[c:{c:name-morph(I;[])| (c y) 0 ∈ ℕ2} ].
  nerve_box_edge'(box; c; y) ∈ cat-arrow(C) nerve_box_label(box;c) nerve_box_label(box;flip(c;y)) 
  supposing (∃j∈J. ¬(j y ∈ Cname)) ∨ (((c x) i ∈ ℕ2) ∧ (¬↑null(J)))


Proof




Definitions occuring in Statement :  nerve_box_edge': nerve_box_edge'(box; c; y) nerve_box_label: nerve_box_label(box;L) cubical-nerve: cubical-nerve(X) open_box: open_box(X;I;J;x;i) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname cat-arrow: cat-arrow(C) small-category: SmallCategory l_exists: (∃x∈L. P[x]) null: null(as) nil: [] list: List int_seg: {i..j-} assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  nerve_box_edge': nerve_box_edge'(box; c; y)
Lemmas referenced :  nerve_box_edge_wf2
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(C);I;J;x;i)].  \mforall{}[y:nameset(I)].  \mforall{}[c:\{c:name-morph(I;[])|  (c  y)  =  0\}  ].
    nerve\_box\_edge'(box;  c;  y)  \mmember{}  cat-arrow(C)  nerve\_box\_label(box;c)  nerve\_box\_label(box;flip(c;y)) 
    supposing  (\mexists{}j\mmember{}J.  \mneg{}(j  =  y))  \mvee{}  (((c  x)  =  i)  \mwedge{}  (\mneg{}\muparrow{}null(J)))



Date html generated: 2016_06_16-PM-07_04_22
Last ObjectModification: 2015_12_28-PM-04_17_13

Theory : cubical!sets


Home Index