Step
*
1
1
4
1
1
of Lemma
same-face-square-commutes2
.....subterm..... T:t
1:n
1. C : SmallCategory
2. I : Cname List
3. J : nameset(I) List
4. x : nameset(I)
5. i : ℕ2
6. box : open_box(cubical-nerve(C);I;J;x;i)
7. f : name-morph(I;[])
8. g : name-morph(I;[])
9. h : name-morph(I;[])
10. k : name-morph(I;[])
11. a : nameset(I)
12. b : nameset(I)
13. ∀[v:I-face(cubical-nerve(C);I)]
((cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;a)) nerve_box_label(box;flip(flip(f;a);b))
nerve_box_edge(box;f;a)
nerve_box_edge(box;flip(f;a);b))
= (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;b)) nerve_box_label(box;flip(flip(f;b);a))
nerve_box_edge(box;f;b)
nerve_box_edge(box;flip(f;b);a))
∈ (cat-arrow(C) nerve_box_label(box;f) nerve_box_label(box;flip(flip(f;a);b)))) supposing
((v ∈ box) and
(¬(dimension(v) = b ∈ Cname)) and
(¬(dimension(v) = a ∈ Cname)) and
(¬(a = b ∈ nameset(I))) and
((f b) = 0 ∈ ℕ2) and
(((f a) = 0 ∈ ℕ2) ∧ (direction(v) = (f dimension(v)) ∈ ℕ2)))
supposing ((∃j1∈J. ¬(j1 = a ∈ Cname)) ∧ (∃j2∈J. ¬(j2 = b ∈ Cname)))
∨ ((¬↑null(J)) ∧ ((f x) = i ∈ ℤ) ∧ ((flip(f;a) x) = i ∈ ℤ) ∧ ((flip(f;b) x) = i ∈ ℕ2))
14. ((∃j1∈J. ¬(j1 = a ∈ Cname)) ∧ (∃j2∈J. ¬(j2 = b ∈ Cname)))
∨ ((¬↑null(J)) ∧ ((f x) = i ∈ ℤ) ∧ ((flip(f;a) x) = i ∈ ℤ) ∧ ((flip(f;b) x) = i ∈ ℕ2))
15. ¬(a = b ∈ nameset(I))
16. (f a) = 0 ∈ ℕ2
17. (f b) = 0 ∈ ℕ2
18. g = flip(f;a) ∈ name-morph(I;[])
19. h = flip(f;b) ∈ name-morph(I;[])
20. k = flip(flip(f;a);b) ∈ name-morph(I;[])
21. v : I-face(cubical-nerve(C);I)
22. (v ∈ box)
23. ¬(dimension(v) = b ∈ Cname)
24. ¬(dimension(v) = a ∈ Cname)
25. direction(v) = (f dimension(v)) ∈ ℕ2
26. (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;a)) nerve_box_label(box;flip(flip(f;a);b))
nerve_box_edge(box;f;a)
nerve_box_edge(box;flip(f;a);b))
= (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;b)) nerve_box_label(box;flip(flip(f;b);a))
nerve_box_edge(box;f;b)
nerve_box_edge(box;flip(f;b);a))
∈ (cat-arrow(C) nerve_box_label(box;f) nerve_box_label(box;flip(flip(f;a);b)))
27. ¬↑null(J)
⊢ (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;h))
= (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;b)))
∈ (z:cat-ob(C)
⟶ (cat-arrow(C) nerve_box_label(box;f) nerve_box_label(box;h))
⟶ (cat-arrow(C) nerve_box_label(box;h) z)
⟶ (cat-arrow(C) nerve_box_label(box;f) z))
BY
{ EqCD }
1
.....subterm..... T:t
1:n
1. C : SmallCategory
2. I : Cname List
3. J : nameset(I) List
4. x : nameset(I)
5. i : ℕ2
6. box : open_box(cubical-nerve(C);I;J;x;i)
7. f : name-morph(I;[])
8. g : name-morph(I;[])
9. h : name-morph(I;[])
10. k : name-morph(I;[])
11. a : nameset(I)
12. b : nameset(I)
13. ∀[v:I-face(cubical-nerve(C);I)]
((cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;a)) nerve_box_label(box;flip(flip(f;a);b))
nerve_box_edge(box;f;a)
nerve_box_edge(box;flip(f;a);b))
= (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;b)) nerve_box_label(box;flip(flip(f;b);a))
nerve_box_edge(box;f;b)
nerve_box_edge(box;flip(f;b);a))
∈ (cat-arrow(C) nerve_box_label(box;f) nerve_box_label(box;flip(flip(f;a);b)))) supposing
((v ∈ box) and
(¬(dimension(v) = b ∈ Cname)) and
(¬(dimension(v) = a ∈ Cname)) and
(¬(a = b ∈ nameset(I))) and
((f b) = 0 ∈ ℕ2) and
(((f a) = 0 ∈ ℕ2) ∧ (direction(v) = (f dimension(v)) ∈ ℕ2)))
supposing ((∃j1∈J. ¬(j1 = a ∈ Cname)) ∧ (∃j2∈J. ¬(j2 = b ∈ Cname)))
∨ ((¬↑null(J)) ∧ ((f x) = i ∈ ℤ) ∧ ((flip(f;a) x) = i ∈ ℤ) ∧ ((flip(f;b) x) = i ∈ ℕ2))
14. ((∃j1∈J. ¬(j1 = a ∈ Cname)) ∧ (∃j2∈J. ¬(j2 = b ∈ Cname)))
∨ ((¬↑null(J)) ∧ ((f x) = i ∈ ℤ) ∧ ((flip(f;a) x) = i ∈ ℤ) ∧ ((flip(f;b) x) = i ∈ ℕ2))
15. ¬(a = b ∈ nameset(I))
16. (f a) = 0 ∈ ℕ2
17. (f b) = 0 ∈ ℕ2
18. g = flip(f;a) ∈ name-morph(I;[])
19. h = flip(f;b) ∈ name-morph(I;[])
20. k = flip(flip(f;a);b) ∈ name-morph(I;[])
21. v : I-face(cubical-nerve(C);I)
22. (v ∈ box)
23. ¬(dimension(v) = b ∈ Cname)
24. ¬(dimension(v) = a ∈ Cname)
25. direction(v) = (f dimension(v)) ∈ ℕ2
26. (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;a)) nerve_box_label(box;flip(flip(f;a);b))
nerve_box_edge(box;f;a)
nerve_box_edge(box;flip(f;a);b))
= (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;b)) nerve_box_label(box;flip(flip(f;b);a))
nerve_box_edge(box;f;b)
nerve_box_edge(box;flip(f;b);a))
∈ (cat-arrow(C) nerve_box_label(box;f) nerve_box_label(box;flip(flip(f;a);b)))
27. ¬↑null(J)
⊢ (cat-comp(C) nerve_box_label(box;f))
= (cat-comp(C) nerve_box_label(box;f))
∈ (y:cat-ob(C)
⟶ z:cat-ob(C)
⟶ (cat-arrow(C) nerve_box_label(box;f) y)
⟶ (cat-arrow(C) y z)
⟶ (cat-arrow(C) nerve_box_label(box;f) z))
2
.....subterm..... T:t
2:n
1. C : SmallCategory
2. I : Cname List
3. J : nameset(I) List
4. x : nameset(I)
5. i : ℕ2
6. box : open_box(cubical-nerve(C);I;J;x;i)
7. f : name-morph(I;[])
8. g : name-morph(I;[])
9. h : name-morph(I;[])
10. k : name-morph(I;[])
11. a : nameset(I)
12. b : nameset(I)
13. ∀[v:I-face(cubical-nerve(C);I)]
((cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;a)) nerve_box_label(box;flip(flip(f;a);b))
nerve_box_edge(box;f;a)
nerve_box_edge(box;flip(f;a);b))
= (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;b)) nerve_box_label(box;flip(flip(f;b);a))
nerve_box_edge(box;f;b)
nerve_box_edge(box;flip(f;b);a))
∈ (cat-arrow(C) nerve_box_label(box;f) nerve_box_label(box;flip(flip(f;a);b)))) supposing
((v ∈ box) and
(¬(dimension(v) = b ∈ Cname)) and
(¬(dimension(v) = a ∈ Cname)) and
(¬(a = b ∈ nameset(I))) and
((f b) = 0 ∈ ℕ2) and
(((f a) = 0 ∈ ℕ2) ∧ (direction(v) = (f dimension(v)) ∈ ℕ2)))
supposing ((∃j1∈J. ¬(j1 = a ∈ Cname)) ∧ (∃j2∈J. ¬(j2 = b ∈ Cname)))
∨ ((¬↑null(J)) ∧ ((f x) = i ∈ ℤ) ∧ ((flip(f;a) x) = i ∈ ℤ) ∧ ((flip(f;b) x) = i ∈ ℕ2))
14. ((∃j1∈J. ¬(j1 = a ∈ Cname)) ∧ (∃j2∈J. ¬(j2 = b ∈ Cname)))
∨ ((¬↑null(J)) ∧ ((f x) = i ∈ ℤ) ∧ ((flip(f;a) x) = i ∈ ℤ) ∧ ((flip(f;b) x) = i ∈ ℕ2))
15. ¬(a = b ∈ nameset(I))
16. (f a) = 0 ∈ ℕ2
17. (f b) = 0 ∈ ℕ2
18. g = flip(f;a) ∈ name-morph(I;[])
19. h = flip(f;b) ∈ name-morph(I;[])
20. k = flip(flip(f;a);b) ∈ name-morph(I;[])
21. v : I-face(cubical-nerve(C);I)
22. (v ∈ box)
23. ¬(dimension(v) = b ∈ Cname)
24. ¬(dimension(v) = a ∈ Cname)
25. direction(v) = (f dimension(v)) ∈ ℕ2
26. (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;a)) nerve_box_label(box;flip(flip(f;a);b))
nerve_box_edge(box;f;a)
nerve_box_edge(box;flip(f;a);b))
= (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;b)) nerve_box_label(box;flip(flip(f;b);a))
nerve_box_edge(box;f;b)
nerve_box_edge(box;flip(f;b);a))
∈ (cat-arrow(C) nerve_box_label(box;f) nerve_box_label(box;flip(flip(f;a);b)))
27. ¬↑null(J)
⊢ nerve_box_label(box;h) = nerve_box_label(box;flip(f;b)) ∈ cat-ob(C)
Latex:
Latex:
.....subterm..... T:t
1:n
1. C : SmallCategory
2. I : Cname List
3. J : nameset(I) List
4. x : nameset(I)
5. i : \mBbbN{}2
6. box : open\_box(cubical-nerve(C);I;J;x;i)
7. f : name-morph(I;[])
8. g : name-morph(I;[])
9. h : name-morph(I;[])
10. k : name-morph(I;[])
11. a : nameset(I)
12. b : nameset(I)
13. \mforall{}[v:I-face(cubical-nerve(C);I)]
((cat-comp(C) nerve\_box\_label(box;f) nerve\_box\_label(box;flip(f;a))
nerve\_box\_label(box;flip(flip(f;a);b))
nerve\_box\_edge(box;f;a)
nerve\_box\_edge(box;flip(f;a);b))
= (cat-comp(C) nerve\_box\_label(box;f) nerve\_box\_label(box;flip(f;b))
nerve\_box\_label(box;flip(flip(f;b);a))
nerve\_box\_edge(box;f;b)
nerve\_box\_edge(box;flip(f;b);a))) supposing
((v \mmember{} box) and
(\mneg{}(dimension(v) = b)) and
(\mneg{}(dimension(v) = a)) and
(\mneg{}(a = b)) and
((f b) = 0) and
(((f a) = 0) \mwedge{} (direction(v) = (f dimension(v)))))
supposing ((\mexists{}j1\mmember{}J. \mneg{}(j1 = a)) \mwedge{} (\mexists{}j2\mmember{}J. \mneg{}(j2 = b)))
\mvee{} ((\mneg{}\muparrow{}null(J)) \mwedge{} ((f x) = i) \mwedge{} ((flip(f;a) x) = i) \mwedge{} ((flip(f;b) x) = i))
14. ((\mexists{}j1\mmember{}J. \mneg{}(j1 = a)) \mwedge{} (\mexists{}j2\mmember{}J. \mneg{}(j2 = b)))
\mvee{} ((\mneg{}\muparrow{}null(J)) \mwedge{} ((f x) = i) \mwedge{} ((flip(f;a) x) = i) \mwedge{} ((flip(f;b) x) = i))
15. \mneg{}(a = b)
16. (f a) = 0
17. (f b) = 0
18. g = flip(f;a)
19. h = flip(f;b)
20. k = flip(flip(f;a);b)
21. v : I-face(cubical-nerve(C);I)
22. (v \mmember{} box)
23. \mneg{}(dimension(v) = b)
24. \mneg{}(dimension(v) = a)
25. direction(v) = (f dimension(v))
26. (cat-comp(C) nerve\_box\_label(box;f) nerve\_box\_label(box;flip(f;a))
nerve\_box\_label(box;flip(flip(f;a);b))
nerve\_box\_edge(box;f;a)
nerve\_box\_edge(box;flip(f;a);b))
= (cat-comp(C) nerve\_box\_label(box;f) nerve\_box\_label(box;flip(f;b))
nerve\_box\_label(box;flip(flip(f;b);a))
nerve\_box\_edge(box;f;b)
nerve\_box\_edge(box;flip(f;b);a))
27. \mneg{}\muparrow{}null(J)
\mvdash{} (cat-comp(C) nerve\_box\_label(box;f) nerve\_box\_label(box;h))
= (cat-comp(C) nerve\_box\_label(box;f) nerve\_box\_label(box;flip(f;b)))
By
Latex:
EqCD
Home
Index