Nuprl Lemma : same-face-square-commutes2
∀[C:SmallCategory]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
∀[box:open_box(cubical-nerve(C);I;J;x;i)]. ∀[f,g,h,k:name-morph(I;[])].
  ∀a,b:nameset(I).
    (nerve_box_edge(box;f;a) o nerve_box_edge(box;g;b) = nerve_box_edge(box;f;b) o nerve_box_edge(box;h;a)) supposing 
       (((((¬(a = b ∈ nameset(I))) ∧ ((f a) = 0 ∈ ℕ2))
       ∧ ((f b) = 0 ∈ ℕ2)
       ∧ (g = flip(f;a) ∈ name-morph(I;[]))
       ∧ (h = flip(f;b) ∈ name-morph(I;[]))
       ∧ (k = flip(flip(f;a);b) ∈ name-morph(I;[])))
       ∧ (∃v:I-face(cubical-nerve(C);I)
           ((v ∈ box)
           ∧ (¬(dimension(v) = b ∈ Cname))
           ∧ (¬(dimension(v) = a ∈ Cname))
           ∧ (direction(v) = (f dimension(v)) ∈ ℕ2)))) and 
       (((∃j1∈J. ¬(j1 = a ∈ Cname)) ∧ (∃j2∈J. ¬(j2 = b ∈ Cname)))
       ∨ ((¬↑null(J)) ∧ ((f x) = i ∈ ℤ) ∧ ((flip(f;a) x) = i ∈ ℤ) ∧ ((flip(f;b) x) = i ∈ ℕ2))))
Proof
Definitions occuring in Statement : 
nerve_box_edge: nerve_box_edge(box;c;y)
, 
nerve_box_label: nerve_box_label(box;L)
, 
cubical-nerve: cubical-nerve(X)
, 
open_box: open_box(X;I;J;x;i)
, 
face-direction: direction(f)
, 
face-dimension: dimension(f)
, 
I-face: I-face(X;I)
, 
name-morph-flip: flip(f;y)
, 
name-morph: name-morph(I;J)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
cat-square-commutes: x_y1 o y1_z = x_y2 o y2_z
, 
small-category: SmallCategory
, 
l_exists: (∃x∈L. P[x])
, 
l_member: (x ∈ l)
, 
null: null(as)
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
cat-square-commutes: x_y1 o y1_z = x_y2 o y2_z
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
name-morph: name-morph(I;J)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
open_box: open_box(X;I;J;x;i)
, 
nameset: nameset(L)
, 
so_apply: x[s]
, 
top: Top
, 
int_seg: {i..j-}
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
l_exists: (∃x∈L. P[x])
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
false: False
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
true: True
, 
cons: [a / b]
, 
bfalse: ff
, 
squash: ↓T
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_stable: SqStable(P)
, 
nerve_box_edge': nerve_box_edge'(box; c; y)
, 
name-morph-flip: flip(f;y)
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
Lemmas referenced : 
same-face-edge-arrows-commute0, 
not_wf, 
equal_wf, 
equal-wf-T-base, 
int_seg_wf, 
name-morph_wf, 
nil_wf, 
coordinate_name_wf, 
name-morph-flip_wf, 
exists_wf, 
I-face_wf, 
cubical-nerve_wf, 
l_member_wf, 
face-dimension_wf, 
nameset_wf, 
face-direction_wf, 
or_wf, 
l_exists_wf, 
assert_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
extd-nameset_subtype_int, 
open_box_wf, 
list_wf, 
small-category_wf, 
list-cases, 
null_nil_lemma, 
stuck-spread, 
base_wf, 
length_of_nil_lemma, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
product_subtype_list, 
null_cons_lemma, 
false_wf, 
squash_wf, 
true_wf, 
cat-arrow_wf, 
nerve_box_label_wf, 
decidable__assert, 
extd-nameset-nil, 
cat-comp_wf, 
cat-ob_wf, 
iff_weakening_equal, 
nerve_box_edge_wf2, 
decidable__equal_int, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
decidable__lt, 
lelt_wf, 
subtype_rel-equal, 
nerve_box_edge'_wf, 
set_wf, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqff_to_assert, 
eq-cname_wf, 
iff_transitivity, 
bnot_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
assert-eq-cname, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
name-morph-flips-commute
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
lambdaFormation, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
productEquality, 
because_Cache, 
natural_numberEquality, 
applyEquality, 
setElimination, 
rename, 
sqequalRule, 
baseClosed, 
lambdaEquality, 
setEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
intEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
applyLambdaEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
independent_functionElimination, 
promote_hyp, 
hypothesis_subsumption, 
hyp_replacement, 
imageElimination, 
universeEquality, 
inlFormation, 
inrFormation, 
imageMemberEquality, 
dependent_set_memberEquality, 
instantiate, 
cumulativity, 
impliesFunctionality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(C);I;J;x;i)].  \mforall{}[f,g,h,k:name-morph(I;[])].
    \mforall{}a,b:nameset(I).
        (nerve\_box\_edge(box;f;a)  o  nerve\_box\_edge(box;g;b)
          =  nerve\_box\_edge(box;f;b)  o  nerve\_box\_edge(box;h;a))  supposing 
              (((((\mneg{}(a  =  b))  \mwedge{}  ((f  a)  =  0))
              \mwedge{}  ((f  b)  =  0)
              \mwedge{}  (g  =  flip(f;a))
              \mwedge{}  (h  =  flip(f;b))
              \mwedge{}  (k  =  flip(flip(f;a);b)))
              \mwedge{}  (\mexists{}v:I-face(cubical-nerve(C);I)
                      ((v  \mmember{}  box)
                      \mwedge{}  (\mneg{}(dimension(v)  =  b))
                      \mwedge{}  (\mneg{}(dimension(v)  =  a))
                      \mwedge{}  (direction(v)  =  (f  dimension(v))))))  and 
              (((\mexists{}j1\mmember{}J.  \mneg{}(j1  =  a))  \mwedge{}  (\mexists{}j2\mmember{}J.  \mneg{}(j2  =  b)))
              \mvee{}  ((\mneg{}\muparrow{}null(J))  \mwedge{}  ((f  x)  =  i)  \mwedge{}  ((flip(f;a)  x)  =  i)  \mwedge{}  ((flip(f;b)  x)  =  i))))
Date html generated:
2017_10_05-PM-03_39_45
Last ObjectModification:
2017_07_28-AM-11_26_32
Theory : cubical!sets
Home
Index